6,387
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Artificial Intelligence Applications in Orthodontics

, DDS, MS, PhD, , DDS, MS, , BS, , BS, , BS, , BS, , DDS, MS, PhD, , DDS, MS, , MS, , DDS, MS, PhD, , DDS, MS, PhD, , DDS, MS, PhD, , DDS, MS, PhD, , DDS, MS, PhD, , DDS, MS, PhD, , MS, , DDS, MS, PhDORCID Icon, , MS, PhD & , DDS, MS, PhD show all
Article: 2195585 | Received 23 Nov 2022, Accepted 16 Mar 2023, Published online: 13 Apr 2023

References

  • Jacox LA, Mihas P, Cho C, Lin FC, Ko CC. Understanding technology adoption by orthodontists: a qualitative study. Am J Orthod Dentofacial Orthop. 2019;155(3):432–14. doi:10.1016/j.ajodo.2018.08.018.
  • Alyass A, Turcotte M, Meyre D. From big data analysis to personalized medicine for all: challenges and opportunities. BMC Med Genomics. 2015;8(1):33. doi:10.1186/s12920-015-0108-y.
  • Cai L, Zhu Y. The challenges of data quality and data quality assessment in the big data era. Data Sci J. 2015;14:2. doi:10.5334/dsj-2015-002.
  • Li P, Kong D, Tang T, et al. Orthodontic treatment planning based on artificial neural networks. Sci Rep. 2019;9(1):2037. doi:10.1038/s41598-018-38439-w.
  • University of Michigan School of Dentistry Podcast Series. Chin cup therapy. https://www.youtube.com/watch?v=LQFa_S9iss&list=PL824FB49D6CECCC25&index=45. Accessed November 19, 2022.
  • Subramanian AK, Chen Y, Almalki A, Sivamurthy G, Kafle D. Cephalometric analysis in orthodontics using artificial intelligence-A comprehensive review. Biomed Res Int. 2022;2022:1880113. doi:10.1155/2022/1880113.
  • Monill-Gonzalez A, Rovira-Calatayud L, d’Oliveira NG, Ustrell-Torrent JM. Artificial intelligence in orthodontics: where are we now? A scoping review. Orthod Craniofac Res. 2021;24(Suppl 2):6–15. doi:10.1111/ocr.12517.
  • Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: a scoping review. J Dent. 2019;91:103226. doi:10.1016/j.jdent.2019.103226.
  • Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81(1):52–68. doi:10.1007/s00056-019-00203-8.
  • Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks. J Med Imaging (Bellingham). 2017;4(1):014501. doi:10.1117/1.JMI.4.1.014501.
  • Kim H, Shim E, Park J, Kim Y-J, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513. doi:10.1016/j.cmpb.2020.105513.
  • Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J. Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res. 2020;99(3):249–256. doi:10.1177/0022034520901715.
  • Yassir YA, Salman AR, Nabbat SA. The accuracy and reliability of WebCeph for cephalometric analysis. J Taibah Univ Med Sci. 2022;17(1):57–66. doi:10.1016/j.jtumed.2021.08.010.
  • Meric P, Naoumova J. Web-based fully automated cephalometric analysis: comparisons between app-aided, computerized, and manual tracings. Turk J Orthod. 2020;33(3):142–149. doi:10.5152/TurkJOrthod.2020.20062.
  • Juneja M, Garg P, Kaur R, et al. A review on cephalometric landmark detection techniques. Biomed Signal Process Control. 2021;66:102486. doi:10.1016/j.bspc.2021.102486.
  • Park JH, Hwang HW, Moon JH, et al. Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–909. doi:10.2319/022019-127.1.
  • Nishimoto S, Sotsuka Y, Kawai K, Ishise H, Kakibuchi M. Personal computer-based cephalometric landmark detection with deep learning, using cephalograms on the internet. J Craniofac Surg. 2019;30(1):91–95. doi:10.1097/SCS.0000000000004901.
  • Lee JH, Yu HJ, Kim MJ, Kim JW, Choi J. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. BMC Oral Health. 2020;20(1):270. doi:10.1186/s12903-020-01256-7.
  • Hwang HW, Park JH, Moon JH, et al. Automated identification of cephalometric landmarks: part 2-Might it be better than human? Angle Orthod. 2020;90(1):69–76. doi:10.2319/022019-129.1.
  • Bulatova G, Kusnoto B, Grace V, Tsay TP, Avenetti DM, Sanchez FJC. Assessment of automatic cephalometric landmark identification using artificial intelligence. Orthod Craniofac Res. 2021;24(Suppl 2):37–42. doi:10.1111/ocr.12542.
  • Hwang JJ, Lee JH, Han SS, et al. Strut analysis for osteoporosis detection model using dental panoramic radiography. Dentomaxillofac Radiol. 2017;46(7):20170006. doi:10.1259/dmfr.20170006.
  • Chandrashekar G, AlQarni S, Bumann EE, Lee Y. Collaborative deep learning model for tooth segmentation and identification using panoramic radiographs. Comput Biol Med. 2022;148:105829. doi:10.1016/j.compbiomed.2022.105829.
  • Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129(6):635–642. doi:10.1016/j.oooo.2019.11.007.
  • Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9(1):8495. doi:10.1038/s41598-019-44839-3.
  • Zhou T, Hou S, Liu Y, Dang P, Lu H, Shi H. Teeth U-Net: a segmentation model of dental panoramic X-ray images for context semantics and contrast enhancement. Comput Biol Med. 2022;152:106296. doi:10.1016/j.compbiomed.2022.106296.
  • Wirtz A, Mirashi SG, Wesarg S. Automatic teeth segmentation in panoramic X-Ray images using a coupled shape model in combination with a neural network. Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018; 2018; Cham.
  • Krois J, Garcia Cantu A, Chaurasia A, et al. Generalizability of deep learning models for dental image analysis. Sci Rep. 2021;11(1):6102. doi:10.1038/s41598-021-85454-5.
  • Wang L, Gao Y, Shi F, et al. Automated segmentation of dental CBCT image with prior-guided sequential random forests. Med Phys. 2016;43(1):336. doi:10.1118/1.4938267.
  • Kim YH, Shin JY, Lee A, Park S, Han S-S, Hwang HJ. Automated cortical thickness measurement of the mandibular condyle head on CBCT images using a deep learning method. Sci Rep. 2021;11(1):14852. doi:10.1038/s41598-021-94362-7.
  • Preda F, Morgan N, Van Gerven A, et al. Deep convolutional neural network-based automated segmentation of the maxillofacial complex from cone-beam computed tomography: a validation study. J Dent. 2022;124:104238. doi:10.1016/j.jdent.2022.104238.
  • Wang H, Minnema J, Batenburg KJ, Forouzanfar T, Hu FJ, Wu G. Multiclass CBCT image segmentation for orthodontics with deep learning. J Dent Res. 2021;100(9):943–949. doi:10.1177/00220345211005338.
  • Gillot M, Baquero B, Le C, et al. Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR. PLoS One. 2022;17(10):e0275033. doi:10.1371/journal.pone.0275033.
  • Shaheen E, Leite A, Alqahtani KA, et al. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. J Dent. 2021;115:103865. doi:10.1016/j.jdent.2021.103865.
  • Mimics. https://www.materialise.com/en/medical/mimics-innovation-suite. Accessed February 27, 2023.
  • Relu. https://relu.eu. Accessed February 27, 2023.
  • Ezhov M, Gusarev M, Golitsyna M, et al. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci Rep. 2021;11(1):15006. doi:10.1038/s41598-021-94093-9.
  • Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3(1):160018. doi:10.1038/sdata.2016.18.
  • Lagravere MO, Low C, Flores-Mir C, et al. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am J Orthod Dentofacial Orthop. 2010;137(5):598–604. doi:10.1016/j.ajodo.2008.07.018.
  • Ghowsi A, Hatcher D, Suh H, et al. Automated landmark identification on cone-beam computed tomography: accuracy and reliability. Angle Orthod. 2022;92(5):642–654. doi:10.2319/122121-928.1.
  • Gillot MB, Ruellas A, Gurgel M, et al. Automatic landmark identification in cone beam computed tomography scans. J Dent Res. 2022; #Spec Iss_:0098. doi10.1111/ocr.12642.
  • Im J, Kim JY, Yu HS, et al. Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. Sci Rep. 2022;12(1):9429. doi:10.1038/s41598-022-13595-2.
  • Wu TH, Lian C, Lee S, et al. Two-stage mesh deep learning for automated tooth segmentation and landmark localization on 3D intraoral scans. IEEE Trans Med Imaging. 2022;41(11):3158–3166. doi:10.1109/TMI.2022.3180343.
  • Woodsend B, Koufoudaki E, Lin P, et al. Development of intra-oral automated landmark recognition (ALR) for dental and occlusal outcome measurements. Eur J Orthod. 2022;44(1):43–50. doi:10.1093/ejo/cjab012.
  • Tian S, Dai N, Zhang B, Yuan F, Yu Q, Cheng X. Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks. IEEE Access. 2019;7:84817–84828. doi:10.1109/ACCESS.2019.2924262.
  • Lian C, Wang L, Wu T-H, et al. Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans Med Imaging. 2020;39(7):2440–2450. doi:10.1109/TMI.2020.2971730.
  • Chen Q, Huang J, Salehi HS, et al. Hierarchical CNN-based occlusal surface morphology analysis for classifying posterior tooth type using augmented images from 3D dental surface models. Comput Methods Programs Biomed. 2021;208:106295. doi:10.1016/j.cmpb.2021.106295.
  • Baquero BP, Rey D, Aristizabal J, et al. ALIDDM: automatic landmark identification in digital dental models. J Dent Res. 2022; #Spec Iss_:0847. https://iadr.abstractarchives.com/abstract/51am-3668353/aliddm-automatic-landmark-identification-in-digital-dental-models:1-1.
  • Jeong SH, Yun JP, Yeom HG, Lim HJ, Lee J, Kim BC. Deep learning based discrimination of soft tissue profiles requiring orthognathic surgery by facial photographs. Sci Rep. 2020;10(1):16235. doi:10.1038/s41598-020-73287-7.
  • Obwegeser D, Timofte R, Mayer C, et al. Using artificial intelligence to determine the influence of dental aesthetics on facial attractiveness in comparison to other facial modifications. Eur J Orthod. 2022;44(4):445–451. doi:10.1093/ejo/cjac016.
  • Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg. 2019;48(1):77–83. doi:10.1016/j.ijom.2018.07.010.
  • Ryu J, Lee YS, Mo SP, Lim K, Jung S-K, Kim T-W. Application of deep learning artificial intelligence technique to the classification of clinical orthodontic photos. BMC Oral Health. 2022;22(1):454. doi:10.1186/s12903-022-02466-x.
  • Sangalli L, Savoldi F, Dalessandri D, Visconti L, Massetti F, Bonetti S. Remote digital monitoring during the retention phase of orthodontic treatment: a prospective feasibility study. Korean J Orthod. 2022;52(2):123–130. doi:10.4041/kjod.2022.52.2.123.
  • Kuriakose P, Greenlee GM, Heaton LJ, Khosravi R, Tressel W, Bollen A-M. The assessment of rapid palatal expansion using a remote monitoring software. Journal of the World Federation of Orthodontists. 2019;8(4):165–170. doi:10.1016/j.ejwf.2019.11.001.
  • Giudice A, Barone S, Muraca D, et al. Can teledentistry improve the monitoring of patients during the covid-19 dissemination? a descriptive pilot study. Int J Environ Res Public Health. 2020;17(10):3399. doi:10.3390/ijerph17103399.
  • Hansa I, Semaan SJ, Vaid NR. Clinical outcomes and patient perspectives of Dental Monitoring(R) GoLive(R) with Invisalign(R)-a retrospective cohort study. Prog Orthod. 2020;21(1):16. doi:10.1186/s40510-020-00316-6.
  • Hansa I, Katyal V, Ferguson DJ, Vaid N. Outcomes of clear aligner treatment with and without Dental Monitoring: a retrospective cohort study. Am J Orthod Dentofacial Orthop. 2021;159(4):453–459. doi:10.1016/j.ajodo.2020.02.010.
  • Vaid NR. Artificial Intelligence (AI) driven orthodontic care: a quest toward utopia? Semin Orthod. 2021;27(2):57–61. doi:10.1053/j.sodo.2021.05.001.
  • Morris RS, Hoye LN, Elnagar MH, et al. Accuracy of Dental Monitoring 3D digital dental models using photograph and video mode. Am J Orthod Dentofacial Orthop. 2019;156(3):420–428. doi:10.1016/j.ajodo.2019.02.014.
  • Hansa I, Katyal V, Semaan SJ, Coyne R, Vaid NR. Artificial intelligence Driven Remote Monitoring of orthodontic patients: clinical applicability and rationale. Semin Orthod. 2021;27(2):138–156. doi:10.1053/j.sodo.2021.05.010.
  • Sangalli L, Savoldi F, Dalessandri D, et al. Effects of remote digital monitoring on oral hygiene of orthodontic patients: a prospective study. BMC Oral Health. 2021;21(1):435. doi:10.1186/s12903-021-01793-9.
  • Minervini G, Russo D, Herford AS, et al. Teledentistry in the management of patients with dental and temporomandibular disorders. Biomed Res Int. 2022;2022:7091153. doi:10.1155/2022/7091153.
  • Hannequin R, Ouadi E, Racy E, Moreau N. Clinical follow-up of corticotomy-accelerated Invisalign orthodontic treatment with Dental Monitoring. Am J Orthod Dentofacial Orthop. 2020;158(6):878–888. doi:10.1016/j.ajodo.2019.06.025.
  • Moylan HB, Carrico CK, Lindauer SJ, Tufekci E. Accuracy of a smartphone-based orthodontic treatment-monitoring application: a pilot study. Angle Orthod. 2019;89(5):727–733. doi:10.2319/100218-710.1.
  • Al-Moghrabi D, Pandis N, McLaughlin K, Johal A, Donos N, Fleming PS. Evaluation of the effectiveness of a tailored mobile application in increasing the duration of wear of thermoplastic retainers: a randomized controlled trial. Eur J Orthod. 2020;42(5):571–579. doi:10.1093/ejo/cjz088.
  • Bianchi J, Paniagua B, De Oliveira Ruellas AC, et al. 3D slicer craniomaxillofacial modules support patient-specific decision-making for personalized healthcare in dental research. Multimodal Learn Clin Decis Support Clin Image Based Proc 2020;12445:44–53. doi: 10.1007/978-3-030-60946-7_5
  • FAIR Principles. https://www.go-fair.org/fair-principles. Accessed November 20, 2022.
  • American Academy of O, Maxillofacial R. Clinical recommendations regarding use of cone beam computed tomography in orthodontics. [corrected]. Position statement by the American Academy of oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(2):238–257. doi:10.1016/j.oooo.2013.06.002.
  • Fayed MM, Pazera P, Katsaros C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010;80(5):939–951. doi:10.2319/121009-709.1.
  • Brosset S, Dumont M, Bianchi J, et al. 3D auto-segmentation of mandibular condyles. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:1270–1273. doi:10.1109/EMBC44109.2020.9175692.
  • Chen S, Wang L, Li G, et al. Machine learning in orthodontics: introducing a 3D auto-segmentation and auto-landmark finder of CBCT images to assess maxillary constriction in unilateral impacted canine patients. Angle Orthod. 2020;90(1):77–84. doi:10.2319/012919-59.1.
  • Dumont M, Prieto JC, Brosset S, et al. Patient specific classification of dental root canal and crown shape. Shape Med Imaging. 2020;12474:145–153. doi:10.1007/978-3-030-61056-2_12.
  • Fan Y, Beare R, Matthews H, et al. Marker-based watershed transform method for fully automatic mandibular segmentation from CBCT images. Dentomaxillofac Radiol. 2019;48(2):20180261. doi:10.1259/dmfr.20180261.
  • Lie WN. Automatic target segmentation by locally adaptive image thresholding. IEEE Trans Image Process. 1995;4(7):1036–1041. doi:10.1109/83.392347.
  • Ma WY, Manjunath BS. EdgeFlow: a technique for boundary detection and image segmentation. IEEE Trans Image Process. 2000;9(8):1375–1388. doi:10.1109/83.855433.
  • Ruellas AC, Tonello C, Gomes LR, et al. Common 3-dimensional coordinate system for assessment of directional changes. Am J Orthod Dentofacial Orthop. 2016;149(5):645–656. doi:10.1016/j.ajodo.2015.10.021.
  • Cevidanes LH, Heymann G, Cornelis MA, DeClerck HJ, Tulloch JF. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients. Am J Orthod Dentofacial Orthop. 2009;136(1):94–99. doi:10.1016/j.ajodo.2009.01.018.
  • Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofacial Orthop. 2006;129(5):611–618. doi:10.1016/j.ajodo.2005.12.008.
  • Ruellas AC, Huanca Ghislanzoni LT, Gomes MR, et al. Comparison and reproducibility of 2 regions of reference for maxillary regional registration with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2016;149(4):533–542. doi:10.1016/j.ajodo.2015.09.026.
  • Ruellas AC, Yatabe MS, Souki BQ, et al. 3D mandibular superimposition: comparison of regions of reference for voxel-based registration. PLoS One. 2016;11(6):e0157625. doi:10.1371/journal.pone.0157625.
  • Moyers RE, Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod. 1979;75(6):599–617. doi:10.1016/0002-9416(79)90093-9.
  • Gunz P, Mitteroecker P, Bookstein FL. Semilandmarks in Three Dimensions. Modern Morphometrics in Physical Anthropology. New York, NY: Springer; 2005. 73–98.
  • Kenyhercz MW, Klales AR, Kenyhercz WE. Molar size and shape in the estimation of biological ancestry: a comparison of relative cusp location using geometric morphometrics and interlandmark distances. Am J Phys Anthropol. 2014;153(2):269–279. doi:10.1002/ajpa.22429.
  • Paniagua B, Alhadidi A, Cevidanes L, Styner M, Oguz I. Mandibular asymmetry characterization using generalized tensor-based morphometry. Proc IEEE Int Symp Biomed Imaging. 2011;2011:1175–1178. doi:10.1109/ISBI.2011.5872611.
  • Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW. Detection and mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. J Comput Assist Tomogr. 1997;21(4):567–581. doi:10.1097/00004728-199707000-00008.
  • Andresen PR, Bookstein FL, Conradsen K, Ersboll BK, Marsh JL, Kreiborg S. Surface-bounded growth modeling applied to human mandibles. IEEE Trans Med Imaging. 2000;19(11):1053–1063. doi:10.1109/42.896780.
  • Dean D, Hans MG, Bookstein FL, Subramanyan K. Three-dimensional bolton–brush growth study landmark data: ontogeny and sexual dimorphism of the bolton standards cohort. Cleft Palate Craniofac J. 2000;37(2):145–156. doi:10.1597/1545-1569(2000)037<0145:TDBBGS>2.3.CO;2.
  • Subsol G, Thirion JP, Ayache N. A scheme for automatically building three-dimensional morphometric anatomical atlases: application to a skull atlas. Med Image Anal. 1998;2(1):37–60. doi:10.1016/s1361-8415(01)80027-x.
  • Gerig G, Jomier M, Chakos M. Valmet: a new validation tool for assessing and improving 3D object segmentation. Paper presented at: International Conference on Medical Image Computing and Computer-Assisted Intervention. 4th International Conference Utrecht; 2001; The Netherlands.
  • Styner M, Oguz I, Xu S, et al. Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 2006;1071:242–250. doi:10.54294/owxzil.
  • 3D Slicer hwso. Accessed November 22, 2022.
  • Face Base hwfo. Accessed November 22, 2022.
  • Imaging Data Commons hidcg. Accessed November 22, 2022.
  • Mildenberger P, Eichelberg M, Martin E. Introduction to the DICOM standard. Eur Radiol. 2002;12(4):920–927. doi:10.1007/s003300101100.
  • Theyers AE, Zamyadi M, O’Reilly M, et al. Multisite comparison of MRI defacing software across multiple cohorts. Front Psychiatry. 2021;12:617997. doi:10.3389/fpsyt.2021.617997.
  • Diaz O, Kushibar K, Osuala R, et al. Data preparation for artificial intelligence in medical imaging: a comprehensive guide to open-access platforms and tools. Phys Med. 2021;83:25–37. doi:10.1016/j.ejmp.2021.02.007.
  • Deleat-Besson R, Le C, Zhang W, et al. Merging and annotating teeth and roots from automated segmentation of multimodal images. Paper presented at: Multimodal Learning for Clinical Decision Support; 2021; Cham.
  • Model to model distance and ShapePopulationViewer video tutorials. https://www.youtube.com/watch?v=Qen8ou5QsAw&list=PLl4LKTeqIlaeBYEHGp1E-0xc510B_bC2Z&index=15. Accessed November 23, 2022.