Publication Cover
Transportation Letters
The International Journal of Transportation Research
Volume 14, 2022 - Issue 10
333
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Assessing influential factors for lane change behavior using full real-world vehicle-by-vehicle data

, , , &

References

  • Adanu, E. K., A. Lidbe, E. Tedla, and S. Jones. 2021a. “Factors Associated with Driver Injury Severity of Lane Changing Crashes Involving Younger and Older Drivers.” Accident Analysis & Prevention 149: 105867. doi:10.1016/j.aap.2020.105867.
  • Adanu, E. K., A. Lidbe, E. Tedla, and S. Jones. 2021b. “Injury-severity Analysis of Lane Change Crashes Involving Commercial Motor Vehicles on Interstate Highways.” Journal of Safety Research 76: 30–35. doi:10.1016/j.jsr.2020.11.001.
  • Ali, Y., Z. Zheng, M. M. Haque, M. Yildirimoglu, and S. Washington. 2020. “Understanding the Discretionary Lane-changing Behaviour in the Connected Environment.” Accident Analysis & Prevention 137: 105463. doi:10.1016/j.aap.2020.105463.
  • Antin, J. F., B. Wotring, M. A. Perez, and D. Glaser. 2020. “Investigating Lane Change Behaviors and Difficulties for Senior Drivers Using Naturalistic Driving Data.” Journal of Safety Research 74: 81–87. doi:10.1016/j.jsr.2020.04.008.
  • Apley, D. W., and J. Zhu. 2020. “Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82 (4): 1059–1086. doi:10.1111/rssb.12377.
  • Arteaga, C., A. Paz, and J. Park. 2020. “Injury Severity on Traffic Crashes: A Text Mining with an Interpretable Machine-learning Approach.” Safety Science 132: 104988. doi:10.1016/j.ssci.2020.104988.
  • Basso, F., L. J. Basso, F. Bravo, and R. Pezoa. 2018. “Real-time Crash Prediction in an Urban Expressway Using Disaggregated Data.” Transportation Research Part C: Emerging Technologies 86: 202–219. doi:10.1016/j.trc.2017.11.014.
  • Basso, F., L. J. Basso, and R. Pezoa. 2020. “The Importance of Flow Composition in Real-time Crash Prediction.” Accident Analysis & Prevention 137: 105436. doi:10.1016/j.aap.2020.105436.
  • Basso, F., A. Cifuentes, R. Pezoa, and M. Varas. 2021a. “A Vehicle-by-vehicle Approach to Assess the Impact of Variable Message Signs on Driving Behavior.” Transportation Research Part C: Emerging Technologies 125: 103015. doi:10.1016/j.trc.2021.103015.
  • Basso, F., R. Pezoa, M. Varas, and M. Villalobos. 2021b. “A Deep Learning Approach for Real-time Crash Prediction Using Vehicle-by-vehicle Data.” Accident Analysis & Prevention 162: 106409. doi:10.1016/j.aap.2021.106409.
  • Best, H., and C. Wolf. 2013. The SAGE Handbook of Regression Analysis and Causal Inference. London, UK: Sage.
  • Chan, C.-Y. 2017. “Advancements, Prospects, and Impacts of Automated Driving Systems.” International Journal of Transportation Science and Technology 6 (3): 208–216. doi:10.1016/j.ijtst.2017.07.008.
  • Chandraratna, S., and N. Stamatiadis. 2003. “Problem Driving Maneuvers of Elderly Drivers.” Transportation Research Record 1843 (1): 89–95. doi:10.3141/1843-11.
  • Chang, L.-Y., and H.-W. Wang. 2006. “Analysis of Traffic Injury Severity: An Application of Nonparametric Classification Tree Techniques.” Accident Analysis & Prevention 38 (5): 1019–1027. doi:10.1016/j.aap.2006.04.009.
  • Chang, X., W. Li, J. Ma, T. Yang, and A. Y. Zomaya 2020. “Interpretable Machine Learning in Sustainable Edge Computing: A Case Study of Short-term Photovoltaic Power Output Prediction.” In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8981–8985. Barcelona, Spain: IEEE.
  • Chen, T., and C. Guestrin 2016. “Xgboost: A Scalable Tree Boosting System.” In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. San Francisco, USA.
  • CNP. 2019. “Comision nacional de productividad, chapter 3 plataformas de transporte.” Accessed 2 September 2021. https://www.comisiondeproductividad.cl/wp-content/uploads/2019/05/CAPITULO-3-.pdf
  • CONASET. 2019. “Observatorio de seguridad vial.” Accessed 26 January 2021. https://www.conaset.cl/programa/observatoriodatos-estadistica
  • Das, A., A. Ghasemzadeh, and M. M. Ahmed. 2019. “Analyzing the Effect of Fog Weather Conditions on Driver Lane-keeping Performance Using the Shrp2 Naturalistic Driving Study Data.” Journal of Safety Research 68: 71–80. doi:10.1016/j.jsr.2018.12.015.
  • Das, S., A. Dutta, K. Dey, M. Jalayer, and A. Mudgal. 2020. “Vehicle Involvements in Hydroplaning Crashes: Applying Interpretable Machine Learning.” Transportation Research Interdisciplinary Perspectives 6: 100176. doi:10.1016/j.trip.2020.100176.
  • Das, S., and I. Tsapakis. 2020. “Interpretable Machine Learning Approach in Estimating Traffic Volume on Low-volume Roadways.” International Journal of Transportation Science and Technology 9 (1): 76–88. doi:10.1016/j.ijtst.2019.09.004.
  • Friedman, J., T. Hastie, R. Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1. New York: Springer series in statistics.
  • Friedman, J. H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” Annals of Statistics 29: 1189–1232.
  • Herrero-Fernández, D., and S. Fonseca-Baeza. 2017. “Angry Thoughts in Spanish Drivers and Their Relationship with Crash-related Events. The Mediation Effect of Aggressive and Risky Driving.” Accident Analysis & Prevention 106: 99–108. doi:10.1016/j.aap.2017.05.015.
  • Hess, S., C. F. Choudhury, M. C. Bliemer, and D. Hibberd. 2020. “Modelling Lane Changing Behaviour in Approaches to Roadworks: Contrasting and Combining Driving Simulator Data with Stated Choice Data.” Transportation Research Part C: Emerging Technologies 112: 282–294. doi:10.1016/j.trc.2019.12.003.
  • Huo, D., J. Ma, and R. Chang. 2020. “Lane-changing-decision Characteristics and the Allocation of Visual Attention of Drivers with an Angry Driving Style.” Transportation Research Part F: Traffic Psychology and Behaviour 71: 62–75. doi:10.1016/j.trf.2020.03.008.
  • James, G., D. Witten, T. Hastie, and R. Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. New York, USA: Springer.
  • Kim, E.-J., Y. Kim, and D.-K. Kim 2020a. “Interpretable Machine-learning Models for Estimating Trip Purpose in Smart Card Data.” In Proceedings of the Institution of Civil Engineers-Municipal Engineer, 1–10. Thomas Telford.
  • Kim, T., S. Sharda, X. Zhou, and R. M. Pendyala. 2020b. “A Stepwise Interpretable Machine Learning Framework Using Linear Regression (Lr) and Long Short-term Memory (Lstm): City-wide Demand-side Prediction of Yellow Taxi and For-hire Vehicle (Fhv) Service.” Transportation Research Part C: Emerging Technologies 120: 102786. doi:10.1016/j.trc.2020.102786.
  • Lef’evre, S., D. Vasquez, and C. Laugier. 2014. “A Survey on Motion Prediction and Risk Assessment for Intelligent Vehicles.” ROBOMECH Journal 1 (1): 1–14. doi:10.1186/s40648-014-0001-z.
  • Li, X., W. Wang, and M. Roetting. 2018. “Estimating Driver’s Lane-change Intent considering Driving Style and Contextual Traffic.” IEEE Transactions on Intelligent Transportation Systems 20 (9): 3258–3271. doi:10.1109/TITS.2018.2873595.
  • Li, Y., L. Yang, B. Yang, N. Wang, and T. Wu. 2019. “Application of Interpretable Machine Learning Models for the Intelligent Decision.” Neurocomputing 333: 273–283.
  • Mahajan, V., C. Katrakazas, and C. Antoniou. 2020. “Crash Risk Estimation Due to Lane Changing: A Data-driven Approach Using Naturalistic Data.” IEEE Transactions on Intelligent Transportation Systems 1–10. doi:10.1109/TITS.2020.3042097.
  • Martín-Baos, J. Á., R. García-Ródenas, and L. Rodriguez-Benitez. 2021. “Revisiting Kernel Logistic Regression under the Random Utility Models Perspective. An Interpretable Machine-learning Approach.” Transportation Letters 13 (3): 1–12.
  • Mimura, Y., R. Ando, K. Higuchi, and J. Yang. 2020. “Recognition on Trigger Condition of Autonomous Emergency Braking System.” Journal of Safety Research 72: 239–247. doi:10.1016/j.jsr.2019.12.018.
  • Molnar, C. 2020. Interpretable Machine Learning. Victoria, Canada: Lulu. com.
  • Moridpour, S., M. Sarvi, and G. Rose. 2010. “Lane Changing Models: A Critical Review.” Transportation Letters 2 (3): 157–173. doi:10.3328/TL.2010.02.03.157-173.
  • Murdoch, W. J., C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu 2019. “Definitions, Methods, and Applications in Interpretable Machine Learning.” Proceedings of the National Academy of Sciences, 116( 44): 22071–22080.
  • Park, M., K. Jang, J. Lee, and H. Yeo. 2015. “Logistic Regression Model for Discretionary Lane Changing under Congested Traffic.” Transportmetrica A: Transport Science 11 (4): 333–344. doi:10.1080/23249935.2014.994686.
  • Peng, J., Y. Guo, R. Fu, W. Yuan, and C. Wang. 2015. “Multi-parameter Prediction of Drivers’ Lane-changing Behaviour with Neural Network Model.” Applied Ergonomics 50: 207–217. doi:10.1016/j.apergo.2015.03.017.
  • Peng, J., C. Wang, R. Fu, and W. Yuan. 2020. “Extraction of Parameters for Lane Change Intention Based on Driver’s Gaze Transfer Characteristics.” Safety Science 126: 104647. doi:10.1016/j.ssci.2020.104647.
  • Shahar, A., E. Van Loon, D. Clarke, and D. Crundall. 2012. “Attending Overtaking Cars and Motorcycles through the Mirrors before Changing Lanes.” Accident Analysis & Prevention 44 (1): 104–110. doi:10.1016/j.aap.2011.01.001.
  • Shawky, M. 2020. “Factors Affecting Lane Change Crashes.” IATSS Research 44 (2): 155–161. doi:10.1016/j.iatssr.2019.12.002.
  • Shi, J., and M. Liu. 2019. “Impacts of Differentiated Per-lane Speed Limit on Lane Changing Behaviour: A Driving Simulator-based Study.” Transportation Research Part F: Traffic Psychology and Behaviour 60: 93–104. doi:10.1016/j.trf.2018.10.018.
  • Shi, X., Y. D. Wong, M. Z.-F. Li, C. Palanisamy, and C. Chai. 2019. “A Feature Learning Approach Based on Xgboost for Driving Assessment and Risk Prediction.” Accident Analysis & Prevention 129: 170–179. doi:10.1016/j.aap.2019.05.005.
  • Shirke, C., N. Sumanth, S. Arkatkar, A. Bhaskar, and G. Joshi. 2019. “Modeling Expressway Lane Utilization and Lane Choice Behaviour: A Case Study on Delhi–Gurgaon Expressway.” Transportation Letters 11 (5): 250–263. doi:10.1080/19427867.2017.1336859.
  • Singh, H., and A. Kathuria. 2021. “Analyzing Driver Behavior under Naturalistic Driving Conditions: A Review.” Accident Analysis & Prevention 150: 105908. doi:10.1016/j.aap.2020.105908.
  • Stylianou, K., L. Dimitriou, and M. Abdel-Aty. 2019. “Big Data and Road Safety: A Comprehensive Review.” In Mobility Patterns, Big Data and Transport Analytics, 297–343, Chap. 12.
  • Sun, D. J., and L. Elefteriadou. 2011. “Lane-changing Behavior on Urban Streets: A Focus Group-based Study.” Applied Ergonomics 42 (5): 682–691. doi:10.1016/j.apergo.2010.11.001.
  • Toledo, T., C. F. Choudhury, and M. E. Ben-Akiva. 2005. “Lane-changing Model with Explicit Target Lane Choice.” Transportation Research Record 1934 (1): 157–165. doi:10.1177/0361198105193400117.
  • Vellido, A., J. D. Martín-Guerrero, and P. J. Lisboa 2012. “Making Machine Learning Models Interpretable.” In ESANN, Vol. 12, 163–172. Bruges, Belgium: Citeseer.
  • Wang, C., Z. Li, R. Fu, M. Zhang, and Q. Sun. 2019. “Lane Change Safety Assessment of Coaches in Naturalistic Driving State.” Safety Science 119: 126–132. doi:10.1016/j.ssci.2018.09.009.
  • WHO. 2018. Global status report on road safety 2018. Technical report, World Health Organization.
  • Xie, D.-F., -Z.-Z. Fang, B. Jia, and Z. He. 2019. “A Data-driven Lane-changing Model Based on Deep Learning.” Transportation Research Part C: Emerging Technologies 106: 41–60. doi:10.1016/j.trc.2019.07.002.
  • Xing, Y., C. Lv, H. Wang, D. Cao, and E. Velenis. 2020. “An Ensemble Deep Learning Approach for Driver Lane Change Intention Inference.” Transportation Research Part C: Emerging Technologies 115: 102615. doi:10.1016/j.trc.2020.102615.
  • Xing, Y., C. Lv, H. Wang, H. Wang, Y. Ai, D. Cao, E. Velenis, and F.-Y. Wang. 2019. “Driver Lane Change Intention Inference for Intelligent Vehicles: Framework, Survey, and Challenges.” IEEE Transactions on Vehicular Technology 68 (5): 4377–4390. doi:10.1109/TVT.2019.2903299.
  • Yang, D., L. Zhu, B. Ran, Y. Pu, and P. Hui. 2016. “Modeling and Analysis of the Lane-changing Execution in Longitudinal Direction.” IEEE Transactions on Intelligent Transportation Systems 17 (10): 2984–2992. doi:10.1109/TITS.2016.2542109.
  • Yang, M., X. Wang, and M. Quddus. 2019. “Examining Lane Change Gap Acceptance, Duration and Impact Using Naturalistic Driving Data.” Transportation Research Part C: Emerging Technologies 104: 317–331. doi:10.1016/j.trc.2019.05.024.
  • Yuan, J., M. Abdel-Aty, Q. Cai, and J. Lee. 2019. “Investigating Drivers’ Mandatory Lane Change Behavior on the Weaving Section of Freeway with Managed Lanes: A Driving Simulator Study.” Transportation Research Part F: Traffic Psychology and Behaviour 62: 11–32. doi:10.1016/j.trf.2018.12.007.
  • Yun, M., J. Zhao, J. Zhao, X. Weng, and X. Yang. 2017. “Impact of In-vehicle Navigation Information on Lane-change Behavior in Urban Expressway Diverge Segments.” Accident Analysis & Prevention 106: 53–66. doi:10.1016/j.aap.2017.05.025.
  • Zahabi, M., A. M. A. Razak, A. E. Shortz, R. K. Mehta, and M. Manser. 2020. “Evaluating Advanced Driver-assistance System Trainings Using Driver Performance, Attention Allocation, and Neural Efficiency Measures.” Applied Ergonomics 84: 103036. doi:10.1016/j.apergo.2019.103036.
  • Zheng, Z. 2014. “Recent Developments and Research Needs in Modeling Lane Changing.” Transportation Research Part B: Methodological 60: 16–32. doi:10.1016/j.trb.2013.11.009.
  • Zhou, H., Y. Sun, X. Qin, X. Xu, and R. Yao. 2020. “Modeling Discretionary Lane-changing Behavior on Urban Streets considering Drivers’ Heterogeneity.” Transportation Letters 12 (3): 213–222. doi:10.1080/19427867.2019.1581465.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.