6,112
Views
5
CrossRef citations to date
0
Altmetric
World Risk and Adaptation Futures (Future Trends in Exposure and Vulnerability Influencing Climate Change Adaptation)

Digitalization for transformative urbanization, climate change adaptation, and sustainable farming in Africa: trend, opportunities, and challenges

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 17-37 | Received 02 Jan 2021, Accepted 30 Nov 2021, Published online: 07 Apr 2022

References

  • Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag. 110:55–66. doi:10.1016/j.agwat.2012.04.001.
  • Abubakar IR. 2021. Predictors of inequalities in land ownership among Nigerian households: implications for sustainable development. Land Use Policy. 101:105194. doi:10.1016/j.landusepol.2020.105194.
  • Abubakar IR, Aina YA. 2019. The prospects and challenges of developing more inclusive, safe, resilient and sustainable cities in Nigeria. Land Use Policy. 87:104105. doi:10.1016/j.landusepol.2019.104105.
  • Abubakar IR, Dano UL. 2020. Sustainable urban planning strategies for mitigating climate change in Saudi Arabia.  Environ Dev Sustain. 22(6):5129–5152. doi:10.1007/s10668-019-00417-1.
  • Adeboye OB, Schultz B, Adekalu KO, Prasad KC. 2019. Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria. Agric Water Manag 213:1130–1146. doi:10.1016/j.agwat.2018.11.006.
  • AgroClimate. (2015). AgroClimate. Accessed from http://agroclimate.org
  • AgroClimate. (2021). AgroClimate Mozambique decision support system. Accessed from http://agroclimate.org/projects/agroclimate-mozambique-decision-support-system
  • Akinbile LA, Aminu OO, Kolade RIJJOAE. 2018. Perceived effect of climate change on forest dependent livelihoods in Oyo State, Nigeria. 22(2).
  • Allore HG, Jones LR, Merrill WG, Oltenacu PA. 1995. A decision support system for evaluating mastitis information1. J Dairy Sci. 78(6):1382–1398. doi:10.3168/jds.S0022-0302(95)76761-3.
  • Amer, G., S. Mudassir, and M. Malik. 2015. ”Design and operation of Wi-Fi agribot integrated system.” In 2015 International Conference on Industrial Instrumentation and Control (ICIC), 207–12. IEEE.
  • Arndt C, Thurlow J. 2015. Climate uncertainty and economic development: evaluating the case of Mozambique to 2050. Clim Change. 130(1):63–75. doi:10.1007/s10584-014-1294-x.
  • Aubert B A, Schroeder A and Grimaudo J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers' adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520. 10.1016/j.dss.2012.07.002
  • Ayaz M, Ammad-Uddin M, Sharif Z, Mansour A and Aggoune E M. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access, 7 129551–129583. 10.1109/ACCESS.2019.2932609
  • Balogun A-L, Marks D, Sharma R, Shekhar H, Balmes C, Maheng D, … Salehi P. 2020. Assessing the potentials of digitalization as a tool for climate change adaptation and sustainable development in urban centres. Sustainable Cities and Society. 53:101888. doi:10.1016/j.scs.2019.101888.
  • Baudracco J, Lopez-Villalobos N, Holmes CW, Comeron EA, MacDonald KA, Barry TN, Friggens NC. 2012. E-Cow: an animal model that predicts herbage intake, milk yield and live weight change in dairy cows grazing temperate pastures, with and without supplementary feeding. Animal. 6(6):980–993. doi:10.1017/S1751731111002370.
  • Benke K and Tomkins B. (2017). Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy, 13(1), 13–26. 10.1080/15487733.2017.1394054
  • Beuel S, Alvarez M, Amler E, Behn K, Kotze D, Kreye C, … Becker M. 2016. A rapid assessment of anthropogenic disturbances in East African wetlands. Ecol Indic. 67:684–692. doi:10.1016/j.ecolind.2016.03.034.
  • Bronson K. (2019). Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS - Wageningen Journal of Life Sciences, 90-91 100294 10.1016/j.njas.2019.03.001
  • Cambra Baseca C, Sendra S, Lloret J and Tomas J. (2019). A Smart Decision System for Digital Farming. Agronomy, 9(5), 216 10.3390/agronomy9050216
  • Cavazza F, Galioto F, Raggi M, Viaggi D. 2018. The role of ICT in improving sequential decisions for water management in agriculture. Water. 10(9):1141. ARTN. doi:10.3390/w10091141.
  • Cecchini S and Scott C. (2003). Can information and communications technology applications contribute to poverty reduction? Lessons from rural India. Information Technology for Development, 10(2), 73–84. 10.1002/itdj.1590100203
  • Charania I, Li X. 2020. Smart farming: agriculture’s shift from a labor intensive to technology native industry. Internet of Things. 9:100142. doi:10.1016/j.iot.2019.100142.
  • Chinowsky PS, Schweikert AE, Strzepek NL, Strzepek K. 2015. Infrastructure and climate change: a study of impacts and adaptations in Malawi, Mozambique, and Zambia. Clim Change. 130(1):49–62. doi:10.1007/s10584-014-1219-8.
  • Cho, G. 2018. 'The Australian digital farmer: challenges and opportunities', IOP Conference Series: Earth and Environmental Science, 185: 012036.
  • Chowdhury, M. M. I., Rahman, S. M., Abubakar, I. R., Aina, Y. A., Hasan, M. A., & Khondaker, A. N. (2020). A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh. Environment, Development and Sustainability, 1–29.
  • Chair, ., & De Lannoy, A. (2018). Youth, Deprivation and the Internet in Africa ( Chair. https://researchictafrica.net/after-access-survey-papers/2018/After_Access:_youth_and_digital_inequality_in_Africa.pdf
  • De Zeeuw H, Van Veenhuizen R, Dubbeling M. 2011. The role of urban agriculture in building resilient cities in developing countries. J Agric Sci. 149(S1):153–163. doi:10.1017/S0021859610001279.
  • Fanadzo M, Ncube B, French A, Belete A. 2021. Smallholder farmer coping and adaptation strategies during the 2015-18 drought in the Western Cape, South Africa. Physics and Chemistry of the Earth, Parts A/B/C. 124:102986. doi:10.1016/j.pce.2021.102986
  • FAO. (2020). Urban Food Agenda. Retrieved from http://www.fao.org/urban-agriculture/en
  • Farmforce. ( n.d). Leveraging digital field-level data to track commercial performance, guide strategic decisions, and quantify impact. from https://farmforce.com/wp-content/uploads/2020/05/Acceso-Haiti-Farmforce_AccesoHaiti_Case_Study.pdf
  • Fazey I, Moug P, Allen S, Beckmann K, Blackwood D, Bonaventura M, … Wolstenholme R. 2018. Transformation in a changing climate: a research agenda. Climate and Development. 10(3):197–217. doi:10.1080/17565529.2017.1301864.
  • Fedele G, Donatti CI, Harvey CA, Hannah L, Hole DG. 2019. Transformative adaptation to climate change for sustainable social-ecological systems. Environ Sci Policy. 101:116–125. doi:10.1016/j.envsci.2019.07.001.
  • Foster T, Brozović N, Butler AP, Neale CMU, Raes D, Steduto P, … Hsiao TC. 2017. AquaCrop-OS: an open source version of FAO’s crop water productivity model. Agric Water Manag. 181:18–22. doi:10.1016/j.agwat.2016.11.015.
  • Gaspard R, Uwiragiye A, Tuyishimire J, Mugabowindekwe M, Mutabazi A, Hategekimana S, Mugisha J. 2019. Assessing the impact of climate change and variability on wetland maize production and the implication on food security in the highlands and central plateaus of Rwanda. 11. 77–102.
  • Gaydon DS, Balwinder S, Wang E, Poulton PL, Ahmad B, Ahmed F, … Roth CH. 2017. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 204:52–75. doi:10.1016/j.fcr.2016.12.015.
  • Giacomo F, Camila ID, Celia AH, Lee H, David GH. 2019. Transformative adaptation to climate change for sustainable social-ecological systems. Environmental Science and Policy.
  • Grameen Foundation. 2021. AppLab: Agriculture Applications Deployed. Accessed from https://applab.org/section/uganda-ag-apps.html
  • Grieve BD, Duckett T, Collison M, Boyd L, West J, Yin H, … Pearson S. 2019. The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: a fundamental rethink is required. Global Food Security. 23:116–124. doi:10.1016/j.gfs.2019.04.011.
  • S. S. H. Hajjaj, and K. S. M. Sahari, ”Review of agriculture robotics: Practicality and feasibility,” 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), 2016, pp. 194–198, doi: 10.1109/IRIS.2016.8066090.
  • Hasan, M. A., Abubakar, I. R., Rahman, S. M., Aina, Y. A., Chowdhury, M. M. I., & Khondaker, A. N. (2020). The synergy between climate change policies and national development goals: Implications for sustainability. Journal of Cleaner Production, 249, 119369.
  • Hassanli M, Ebrahimian H, Mohammadi E, Rahimi A, Shokouhi A. 2016. Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agric Water Manag. 176:91–99. doi:10.1016/j.agwat.2016.05.003.
  • Holzworth D, Huth NI, Fainges J, Brown H, Zurcher E, Cichota R, … Snow V. 2018. APSIM next generation: overcoming challenges in modernising a farming systems model. Environ Model Softw. 103:43–51. doi:10.1016/j.envsoft.2018.02.002.
  • Ingabire, C., Mshenga, M. P., Langat, K., Bigler, C., Musoni, A., Butare, L., & Birachi, E. (2017). Towards commercial agriculture in Rwanda: Understanding the determinants of market participation among smallholder bean farmers. African Journal of Food, Agriculture, Nutrition and Development, 17(4), 12492–12508.
  • IPCC. (2014). Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change.
  • Kalantari, F., O. Mohd tahir, A. Mahmoudi Lahijani, and S. Kalantari. 2017. 'A Review of Vertical Farming Technology: A Guide for Implementation of Building Integrated Agriculture in Cities', Advanced Engineering Forum, 24: 76–91.
  • Kamau JW, Mwaura F. 2013. Climate change adaptation and EIA studies in Kenya. International Journal of Climate Change Strategies and Management. 5(2):152–165. doi:10.1108/17568691311327569.
  • Kassian LM, Tenywa M, Liwenga ET, Dyer KW, Bamutaze Y. 2016. Implication of climate change and variability on stream flow in Iringa region, Tanzania. Journal of Water and Climate Change. 8(2):336–347. doi:10.2166/wcc.2016.238.
  • Kates RW, Travis WR, Wilbanks TJ. 2012. Transformational adaptation when incremental adaptations to climate change are insufficient. Proceedings of the National Academy of Sciences. 109(19):7156. doi:10.1073/pnas.1115521109.
  • Klerkx L, Jakku E, Labarthe P. 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: new contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences. 90-91:100315. doi:10.1016/j.njas.2019.100315.
  • Knierim A, Kernecker M, Erdle K, Kraus T, Borges F, Wurbs A. 2019. Smart farming technology innovations – insights and reflections from the German Smart-AKIS hub. NJAS - Wageningen Journal of Life Sciences. 90-91:100314. doi:10.1016/j.njas.2019.100314.
  • Kogo BK, Kumar L, Koech R. 2021. Climate change and variability in Kenya: a review of impacts on agriculture and food security. Environment, Development and Sustainability. 23(1):23–43. doi:10.1007/s10668-020-00589-1.
  • Kullu P, Majeedullah S, Pranay PVS, Yakub B. 2020. Smart urban farming (Entrepreneurship through EPICS). Procedia Comput Sci. 172:452–459. doi:10.1016/j.procs.2020.05.098.
  • Kuntz JRC, Gomes JFS. 2012. Transformational change in organisations: a self-regulation approach. Journal of Organizational Change Management. 25(1):143–162. doi:10.1108/09534811211199637.
  • Leal Filho W, Ellams D, Han S, Tyler D, Boiten VJ, Paço A, … Balogun A-L. 2019. A review of the socio-economic advantages of textile recycling. J Clean Prod. 218:10–20. doi:10.1016/j.jclepro.2019.01.210.
  • Li L, Li X, Chong C, Wang C-H, Wang X. 2020. A decision support framework for the design and operation of sustainable urban farming systems. J Clean Prod. 268:121928. doi:10.1016/j.jclepro.2020.121928.
  • Loukos P, Arathoon L, Zibi G (2019). Landscaping New Opportunities for Digital Agriculture in Papua New Guinea. Accessed from https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/09/Landscaping-New-Opportunities-for-Digital-Agriculture-in-Papua-New-Guinea.pdf
  • Lwasa S, Mugagga F, Wahab B, Simon D, Connors JP, Griffith C. 2015. A meta-analysis of urban and peri-urban agriculture and forestry in mediating climate change. Curr Opin Environ Sustain. 13:68–73. doi:10.1016/j.cosust.2015.02.003.
  • Mapfumo P, Onyango M, Honkponou SK, El Mzouri EH, Githeko A, Rabeharisoa L, … Agrawal A. 2017. Pathways to transformational change in the face of climate impacts: an analytical framework. Clim Dev. 9(5):439–451. doi:10.1080/17565529.2015.1040365.
  • Markandya A, Cabot-Venton C, Beucher O. 2015. Economic assessment of the impacts of climate change in Uganda. BMJ Open. 5(4). doi:10.1136/bmjopen-2014-007364.
  • Misra, A. K. 2014. 'Climate change and challenges of water and food security', International Journal of Sustainable Built Environment, 3: 153–65.
  • Molotkova NV, Makeeva MN, Blium MA, Gerasimov BI, Gerasimova EB. 2020. Improving Russian Agribusiness competitiveness within the digital transformation framework. Lecture Notes in Networks and Systems. 84:342–350.
  • Mu’azu, N. D., Abubakar, I. R., & Blaisi, N. I. (2020). Public acceptability of treated wastewater reuse in Saudi Arabia: Implications for water management policy. Science of The Total Environment, 137659.
  • Nazarpour M, Abedi M, Bakhtiar F. 2011. The role of information and communication technologies (ICT) in improving agriculture. Life Science Journal-Acta Zhengzhou University Overseas Edition. 8(3):117–121.
  • Nkrumah B. 2019. Africa’s future: demarginalizing urban agriculture in the era of climate change. Food: J Food Agric Soc. 7(1):8–20. doi:10.17170/kobra-2018122072.
  • OECD/FAO. 2016a. Agricultural outlook. p. 2016–2025. https://doi.org/10.1787/agr_outlook-2016-en
  • OECD/FAO. (2016b). Agriculture in Sub-Saharan Africa: prospects and challenges for the next decade. Retrieved from
  • Oliveira-Jr A, Resende C, Pereira A, Madureira P, Gonçalves J, Moutinho R, Soares F and Moreira W. (2020). IoT Sensing Platform as a Driver for Digital Farming in Rural Africa. Sensors, 20(12), 3511 10.3390/s20123511
  • Otto FEL, Wolski P, Lehner F, Tebaldi C, van Oldenborgh GJ, Hogesteeger S, … New M. 2018. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ Res Lett. 13(12):124010. doi:10.1088/1748-9326/aae9f9.
  • Padgham J, Jabbour J, Dietrich K. 2015. Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Climate. 12:183–204. doi:10.1016/j.uclim.2015.04.003.
  • Plà LM, Pomar C, Pomar J. 2004. A sow herd decision support system based on an embedded Markov model. Comput Electron Agric. 45(1–3):51–69. doi:10.1016/j.compag.2004.06.005.
  • Pomar J, Pomar C. 2005. A knowledge-based decision support system to improve sow farm productivity. Expert Syst Appl. 29(1):33–40. doi:10.1016/j.eswa.2005.01.002.
  • Poppe KJ, Wolfert S, Verdouw C, Verwaart T. 2013. Information and communication technology as a driver for change in agri-food chains. EuroChoices. 12(1):60–65. doi:10.1111/1746-692X.12022.
  • Ramin Shamshiri R et al . (2018). Research and development in agricultural robotics: A perspective of digital farming. International Journal of Agricultural and Biological Engineering, 11(4), 1–11. 10.25165/j.ijabe.20181104.4278
  • Rose DC, Sutherland WJ, Parker C, Lobley M, Winter M, Morris C, … Dicks LV. 2016. Decision support tools for agriculture: towards effective design and delivery. Agric Syst. 149:165–174. doi:10.1016/j.agsy.2016.09.009.
  • Rupnik R, Kukar M, Vračar P, Košir D, Pevec D, Bosnić Z. 2019. AgroDSS: a decision support system for agriculture and farming. Comput Electron Agric. 161:260–271. doi:10.1016/j.compag.2018.04.001.
  • Saghir J, Santoro J. 2018. Urbanization in Sub-Saharan Africa: meeting challenges by bridging stakeholders.
  • Sandhu R, Irmak S. 2019. Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agric Water Manag. 223:105687. doi:10.1016/j.agwat.2019.105687.
  • Serdeczny O, Adams S, Baarsch F, Coumou D, Robinson A, Hare W, … Reinhardt J. 2017. Climate change impacts in Sub-Saharan Africa: from physical changes to their social repercussions. Reg Environ Change. 17(6):1585–1600. doi:10.1007/s10113-015-0910-2.
  • Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. (2019). Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.
  • Sridharan V, Pereira Ramos E, Zepeda E, Boehlert B, Shivakumar A, Taliotis C, Howells M. 2019. The impact of climate change on crop production in Uganda—An integrated systems assessment with water and energy implications. Water. 11(9). doi:10.3390/w11091805.
  • Stirzaker R, Mbakwe I, Mziray NR. 2017. A soil water and solute learning system for small-scale irrigators in Africa. Int J Water Resour Dev. 33(5):788–803. doi:10.1080/07900627.2017.1320981.
  • Stöckle CO, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. Eur J Agron. 18(3–4):289–307. doi:10.1016/S1161-0301(02)00109-0.
  • Stricevic R, Cosic M, Djurovic N, Pejic B, Maksimovic L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric Water Manag. 98(10):1615–1621. doi:10.1016/j.agwat.2011.05.011.
  • Tella A, Balogun A-L. 2020. Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria. Natural Hazards. 104(3):2277–2306. doi:10.1007/s11069-020-04272-6.
  • Thenkabail PS, Lyon JG, Huete A. 2011. Hyperspectral remote sensing of vegetation and agricultural crops: knowledge gain and knowledge gap after 40 years of research: chapter 28. Hyperspectral Remote Sensing of Vegetation. 663–688.
  • Trendov, N., S. Varas, and M. Zeng. 2018. DIGITAL TECHNOLOGIES IN AGRICULTURE AND RURAL AREAS STATUS REPORT.
  • Tsan, Michael; Totapally, Swetha; Hailu, Michael, and Addom, Benjamin K. 2019. The Digitalisation of African Agriculture Report 2018–2019. Wageningen, The Netherlands: CTA/Dalberg Advisers.
  • UN. (2020). Sustainable development. Retrieved from https://sdgs.un.org/goals
  • Van Etten J, Beza E, Calderer L, Van Duijvendijk K, Fadda C, Fantahun B, … Zimmerer KS. 2019. First experiences with a novel farmer citizen science approach: crowdsourcing participatory variety selection through on-farm triadic comparisons of technologies (TRICOT). Exp Agric. 55(S1):275–296. doi:10.1017/S0014479716000739.
  • Walter LF, Abdul-Lateef B, Olawale EO, Ulisses MA, Desalegn YA, Pastor David CM, … Chunluan L. 2019. Assessing the impacts of climate change in cities and their adaptive capacity: towards transformative approaches to climate change adaptation and poverty reduction in urban areas in a set of developing countries. Science of the Total Environment, 692.
  • Xu, W., J. Jin, X. Jin, Y. Xiao, J. Ren, J. Liu, R. Sun, and Y. Zhou. 2019. 'Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China', Remote Sensing, 11.
  • Younis, M., I. F. Senturk, K. Akkaya, S. Lee, and F. Senel. 2014. 'Topology management techniques for tolerating node failures in wireless sensor networks: A survey', Computer Networks, 58: 254–83.
  • Zhao, R., Liu, Y., Tian, M., Ding, M., Cao, L., Zhang, Z., and Yao, L. (2018). Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus. Land Use Policy, 72, 480–492.
  • Ziervogel G, New M, Archer van Garderen E, Midgley G, Taylor A, Hamann R, … Warburton M. 2014. Climate change impacts and adaptation in South Africa. WIREs Climate Change. 5(5):605–620. doi:10.1002/wcc.295.