518
Views
3
CrossRef citations to date
0
Altmetric
Articles

Severity modeling of work zone crashes in New Jersey using machine learning models

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Aas, K., Jullum, M., & Løland, A. (2019). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. Artificial Intelligence, 298, 103502.
  • Abdel-Aty, M., Dilmore, J., & Dhindsa, A. (2006). Evaluation of variable speed limits for real-time freeway safety improvement. Accident Analysis and Prevention, 38(2), 335–345.
  • Abdel-Aty, M., Pande, A., Lee, C., Gayah, V., & Santos, C. D. (2007). Crash risk assessment using intelligent transportation systems data and real-time intervention strategies to improve safety on freeways. Journal of Intelligent Transportation Systems, 11(3), 107–120. doi:10.1080/15472450701410395
  • Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, M. F., & Hsia, L. (2004). Predicting freeway crashes from loop detector data by matched case-control logistic regression. Transportation Research Record: Journal of the Transportation Research Board, 1897(1), 88–95. doi:10.3141/1897-12
  • Abou Elassad, Z. E., Mousannif, H., & Al Moatassime, H. (2020). A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems. Transportation Research Part C: Emerging Technologies, 118, 102708. doi:10.1016/j.trc.2020.102708
  • Ahmadi, A., Jahangiri, A., Berardi, V., & Machiani, S. (2020). Crash severity analysis of rear-end crashes in California using statistical and machine learning classification methods. Journal of Transportation Safety & Security, 12(4), 522–546. doi:10.1080/19439962.2018.1505793
  • Ahmed, M. M., Abdel-Aty, M., & Yu, R. (2012a). Assessment of interaction of crash occurrence, mountainous freeway geometry, real-time weather, and traffic data. Transportation Research Record: Journal of the Transportation Research Board, 2280(1), 51–59. doi:10.3141/2280-06
  • Ahmed, M. M., Abdel-Aty, M., & Yu, R. (2012b). Bayesian updating approach for real-time safety evaluation with automatic vehicle identification data. Transportation Research Record: Journal of the Transportation Research Board, 2280(1), 60–67. doi:10.3141/2280-07
  • Ahmed, M. M., Ghasemzadeh, A., Eldeeb, H., Gaweesh, S., Clapp, J., Ksaibati, K., & Young, R. (2015). Driver performance and behavior in adverse weather conditions: An investigation using the SHRP2 naturalistic driving study data–phase 1. Laramie, Wyoming: FHWA.
  • Ashqar, H. I., Shaheen, Q. H., Ashur, S. A., & Rakha, H. A. (2021). Impact of risk factors on work zone crashes using logistic models and Random Forest. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (pp. 1815-1820). IEEE.
  • Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Muller, K. (2010). How to explain individual classification decisions. Journal of Machine Learning Research, 11, 1803–1831.
  • Bai, Y., & Li, Y. (2009). Reducing Work Zone Crashes by Using Vehicle's Warning Flashes as a Warning Sign (Report No.K-TRAN: KU-07-3). University of Kansas Center for Research, Inc., Lawrence, Kansas.
  • Banerjee, A., Arora, N., & Murty, U. S. (2008). Classification and regression tree (CART) analysis for deriving variable importance of parameters influencing average flexibility of CaMK kinase family. Electronic Journal of Biology, 4(1), 27–33.
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992 A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 130401. USA: ACM. doi:10.1145/130385.130401
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. doi:10.1023/A:1010933404324
  • Bryden, J., Andrew, L., & Fortuniewicz, J. (1998). Work zone traffic accidents involving traffic control devices, safety features, and construction operations. Transportation Research Record: Journal of the Transportation Research Board, 1650(1), 71–81. doi:10.3141/1650-09
  • Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
  • Chang, L., & Chen, W. (2005). Data mining of tree-based models to analyze freeway accident frequency. Journal of Safety Research, 36(4), 365–375.
  • Chang, L. Y., & Chien, J. T. (2013). Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science, 51(1), 17–22. doi:10.1016/j.ssci.2012.06.017
  • Chen, C., Zhang, G., Qian, Z., Tarefder, R. A., & Tian, Z. (2016a). Investigating driver injury severity patterns in rollover crashes using support vector machine models. Accident Analysis and Prevention, 90, 128–139.
  • Chen, C., Zhang, G., Tarefder, R., Ma, J., Wei, H., & Guan, H. (2015a). A multinomial logit model-Bayesian network hybrid approach for driver injury severity analyses in rear-end crashes. Accident Analysis and Prevention, 80, 76–88.
  • Chen, C., Zhang, G., Wang, H., Yang, J., Jin, P. J., & Michael Walton, C. (2015b). Bayesian network-based formulation and analysis for toll road utilization supported by traffic information provision. Transportation Research Part C: Emerging Technologies, 60, 339–359. doi:10.1016/j.trc.2015.09.005
  • Chen, C., Zhang, G., Yang, J., Milton, J. C., & Alcántara, A. D. (2016b). An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier. Accident Analysis and Prevention, 90, 95–107.
  • Chen, S., Wang, W., & Zuylen, H. V. (2009). Construct support vector machine ensemble to detect traffic incident. Expert Systems with Applications, 36(8), 10976–10986. doi:10.1016/j.eswa.2009.02.039
  • Cheng, Y., Parker, S. T., Ran, B., & Noyce, D. A. (2016). Work zone crash cost prediction with a least median squares linear regression model. Transportation Research Record: Journal of the Transportation Research Board, 2555(1), 38–45. doi:10.3141/2555-05
  • Cheu, R., Xu, J., Kek, A., Lim, W., & Chen, W. (2006). Forecasting shared-use vehicle trips with neural networks and support vector machines. Transportation Research Record: Journal of the Transportation Research Board, 1968(1), 40–46. doi:10.1177/0361198106196800105
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/BF00994018
  • Daniel, J., Dixon, K., & Jared, D. (2000). Analysis of fatal crashes in Georgia work zones. Transportation Research Record: Journal of the Transportation Research Board, 1715(1), 18–23. doi:10.3141/1715-03
  • Delen, D., Sharda, R., & Bessonov, M. (2006). Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks. Accident Analysis and Prevention, 38(3), 434–444.
  • Delen, D., Tomak, L., Topuz, K., & Eryarsoy, E. (2017). Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods. Journal of Transport & Health, 4, 118–131. doi:10.1016/j.jth.2017.01.009
  • Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. Stat, 1050, 2.
  • Du, M., Liu, N., Hu, X. (2018). Techniques for interpretable machine learning. Technical report. Retrieved from http://arxiv.org/abs/1808.00033
  • Elghamrawy, T. M. (2011). Optimizing work zone practices for highway construction projects. University of Illinois at Urbana-Champaign. Retrieved from https://www.ideals.illinois.edu/bitstream/handle/2142/24344/Elghamrawy_Tarek.pdf?sequence=1
  • FHWA. (2016). KABCO injury classification scale and definitions. Retrieved January 20, 2021, from https://safety.fhwa.dot.gov/hsip/spm/conversion_tbl/pdfs/kabco_ctable_by_state.pdf
  • FHWA. (2019). Work zone safety: Drive like you work here. Retrieved January 31, 2021, from https://ops.fhwa.dot.gov/publications/fhwahop19027/fhwahop19027.pdf
  • FHWA. (2021). National workzone awareness week. Retrieved from https://ops.fhwa.dot.gov/wz/outreach/nwzaw_factsheet_2021/nwzaw_factsheet_2021.pdf
  • Fish, K., & Blodgett, J. (2003). A visual method for determining variable importance in an artificial neural network model: An empirical benchmark study. Journal of Targeting, Measurement and Analysis for Marketing, 11(3), 244–254. doi:10.1057/palgrave.jt.5740081
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
  • Gang, R., & Zhuping, Z. (2011). Traffic safety forecasting method by particle swarm optimization and support vector machine. Expert Systems with Applications, 38(8), 10420–10424. doi:10.1016/j.eswa.2011.02.066
  • Garber, N., & Woo, T.-S. (1990). Accident characteristics at construction and maintenance zones in urban areas (No. VTRC 90-R12). Virginia Transportation Research Council, Charlottesville, Virginia.
  • Garber, N., & Zhao, M. (2002). Crash characteristics at work zones. Charlottesville, Virginia: Virginia Transportation Research Council.
  • García-Herrero, S., Gutiérrez, J. M., Herrera, S., Azimian, A., & Mariscal, M. A. (2020). Sensitivity analysis of driver's behavior and psychophysical conditions. Safety Science, 125, 104586. doi:10.1016/j.ssci.2019.104586
  • Ghasemzadeh, A., & Ahmed, M. M. (2019a). Complementary parametric probit regression and nonparametric classification tree modeling approaches to analyze factors affecting severity of work zone weather-related crashes. Journal of Modern Transportation, 27(2), 129–140. doi:10.1007/s40534-018-0178-6
  • Ghasemzadeh, A., & Ahmed, M. M. (2019b). Exploring factors contributing to injury severity at work zones considering adverse weather conditions. IATSS Research, 43(3), 131–138. doi:10.1016/j.iatssr.2018.11.002
  • Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., & Pedreschi, D. (2018). A survey of methods for explaining black box models. ACM Computing Surveys, 51(5), 1–42. doi:10.1145/3236009
  • Hall, J., & Lorenz, V. (1989). Characteristics of construction-zone accidents. Transportation Research Record, 1230, 20–27.
  • Hamzeie, R., Savolainen, P., & Gates, T. (2017). Driver speed selection and crash risk: Insights from the naturalistic driving study. Journal of Safety Research, 63, 187–194.
  • Hasan, A. S., Kabir, M. A., & Jalayer, M. (2021). Severity analysis of heavy vehicle crashes using machine learning models: A case study in New Jersey. In International Conference on Transportation and Development 2021, 285–296. doi:10.1061/9780784483534.025
  • Heneghan, J. (2018, October 12). Work zone speed limits clarified. Retrieved January 31, 2021, from https://bordaslaw.com/blog/work-zone-speed-limits-clairified
  • Hossain, M., & Muromachi, Y. (2013). Understanding crash mechanism on urban expressways using high-resolution traffic data. Accident Analysis and Prevention, 57, 17–29.
  • Islam, M., Alnawmasi, N., & Mannering, F. (2020). Unobserved heterogeneity and temporal instability in the analysis of work-zone crash-injury severities. Analytic Methods in Accident Research, 28, 100130. doi:10.1016/j.amar.2020.100130
  • Jiang, L., Xie, Y., Ren, T. (2019). Modelling highly unbalanced crash injury severity data by ensemble methods and global sensitivity analysis. Proceedings of the Transportation Research Board 98th Annual Meeting (pp. 13–17). Washington, DC.
  • Kashani, A. T., & Mohaymany, A. S. (2011). Analysis of the traffic injury severity on two-lane, two-way rural roads based on classification tree models. Safety Science, 49(10), 1314–1320. doi:10.1016/j.ssci.2011.04.019
  • Kassmeyer, C. (2020). Work zone crash prediction model and characteristics analysis. Master of Science Thesis.
  • Katta, V. (2013). Development of crash severity model for predicting risk factors in work zones for Ohio. Doctoral dissertation, University of Toledo.
  • Khattak, A., & Targa, F. (2004). Injury severity and total harm in truck-involved work zone crashes. Transportation Research Record: Journal of the Transportation Research Board, 1877(1), 106–116. doi:10.3141/1877-12
  • Khattak, A., Rodriguez, D., Targa, F., & Rocha, M. (2003). Understanding the role of truck-driver. Occupational and high-risk roadway factors in truck-involved collisions. Southeastern Transportation Center, University of Tennessee, Knoxville, Tennessee.
  • Koilada, K., Mane, A., & Pulugurtha, S. (2020). Odds of work zone crash occurrence and getting involved in advance warning, transition, and activity areas by injury severity. IATSS Research, 44(1), 75–83. doi:10.1016/j.iatssr.2019.07.003
  • Kuhnert, P. M., Do, K. A., & McClure, R. (2000). Combining non-parametric models with logistic regression: An application to motor vehicle injury data. Computational Statistics & Data Analysis, 34(3), 371–386. doi:10.1016/S0167-9473(99)00099-7
  • Li, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using support vector machine models. Accident Analysis and Prevention, 40(4), 1611–1618.
  • Li, Y., & Bai, Y. (2009). Highway work zone risk factors and their impact on crash severity. Journal of Transportation Engineering, 135(10), 694–701. doi:10.1061/(ASCE)TE.1943-5436.0000055
  • Li, Z., Liu, P., Wang, W., & Xu, C. (2012). Using support vector machine models for crash injury severity analysis. Accident Analysis and Prevention, 45, 478–486.
  • Liu, J., Khattak, A., & Zhang, M. (2016). What role do precrash driver actions play in work zone crashes? Application of hierarchical models to crash data. Transportation Research Record: Journal of the Transportation Research Board, 2555(1), 1–11. doi:10.3141/2555-01
  • Lv, Y., Tang, S., Zhao, H., & Li, S. (2009). Real-time highway accident prediction based on support vector machines. In Chinese Control and Decision Conference (pp. 4403–4407). IEEE.
  • Macchione, T., Meehan, K., & Baker, M. (2020). A comprehensive management approach to improving work zone safety performance. 2020 MASITE Annual Meeting.
  • Mansoor, U., Ratrout, N. T., Rahman, S. M., & Assi, K. (2020). Crash severity prediction using two-layer ensemble machine learning model for proactive emergency management. IEEE Access. 8, 210750–210762. doi:10.1109/ACCESS.2020.3040165
  • Meng, Q., & Weng, J. (2011). A genetic algorithm approach to assessing work zone casualty risk. Safety Science, 49(8–9), 1283–1288. doi:10.1016/j.ssci.2011.05.001
  • Meng, Q., Weng, J., & Qu, X. (2010). A probabilistic quantitative risk assessment model for the long-term work zone crashes. Accident Analysis and Prevention, 42(6), 1866–1877. doi:10.1016/j.aap.2010.05.007
  • Mokhtarimousavi, S., Anderson, J. C., Azizinamini, A., & Hadi, M. (2019). Improved support vector machine models for work zone crash injury severity prediction and analysis. Transportation Research Record: Journal of the Transportation Research Board, 2673(11), 680–692. doi:10.1177/0361198119845899
  • Molnar, C. (2019). Interpretable machine learning - A guide for making black box models explainable. Retrieved January 31, 2021, from https://christophm.github.io/interpretable-ml-book/
  • Montella, A., Aria, M., D'Ambrosio, A., & Mauriello, F. (2012). Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident Analysis and Prevention, 49, 58–72.
  • Nasrollahzadeh, A. A., Sofi, A. R., & Ravani, B. (2021). Identifying factors associated with roadside work zone collisions using machine learning techniques. Accident Analysis and Prevention, 158, 106203.
  • National Work Zone Safety Information Clearinghouse. (2019). Work zone fatal crashes and fatalities. Retrieved January 31, 2021, from https://www.workzonesafety.org/crash-information/work-zone-fatal-crashes-fatalities/#new%20jersey
  • Nemeth, Z. A., & Migletz, D. J. (1978). Accident characteristics before, during, and after safety upgrading projects on Ohio’s rural interstate system. Transportation Research Record, 672, 19–23.
  • New Jersey Department of Transportation. (2018). Weekday average speed data. Bureau of Transportation Data and Support Traffic and Technology Section. Retrieved from https://www.state.nj.us/transportation/refdata/roadway/pdf/wim/18_Classdata_spd.pdf
  • Olden, J. D., Joy, M. K., & Death, R. G. (2004). An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecological Modelling, 178(3–4), 389–397. doi:10.1016/j.ecolmodel.2004.03.013
  • Osman, M., Paleti, R., & Mishra, S. (2018). Analysis of passenger-car crash injury severity in different work zone configurations. Accident Analysis and Prevention, 111, 161–172.
  • Osman, M., Paleti, R., Mishra, S., & Golias, M. (2016). Analysis of injury severity of large truck crashes in work zones. Accident Analysis and Prevention, 97(December), 261–273. doi:10.1016/j.aap.2016.10.020
  • Parr, T., Turgutlu, K., Csiszar, C., & Howard, J. (2018). Beware default random forest importances. Retrieved January 31, 2021, from https://explained.ai/rf-importance/
  • Parsa, A. B., Movahedi, A., Taghipour, H., Derrible, S., & Mohammadian, A. K. (2020). Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident Analysis and Prevention, 136, 105405.
  • Pedregosa, F. V. (2011). Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
  • Prichard, B. (2015, May 10). Exploration of crash severity and location in work zone-related crashes in Alabama. Retrieved from https://etd.auburn.edu/bitstream/handle/10415/4473/Bradley%20Prichard_1-7-15.pdf?sequence=2&isAllowed=y
  • Qi, Y., Srinivasan, R., Teng, H., & Baker, R. (2005). Frequency of work zone accidents on construction projects. University Transportation Research Center, The City College of New York, New York.
  • Ratner, B. (2009). The correlation coefficient: Its values range between +1/−1, or do they? Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142. doi:10.1057/jt.2009.5
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). ACM.
  • Salem, O. M., Genaidy, A. M., Wei, H., & Deshpande, N. (2006). Spatial distribution and characteristics of accident crashes at work zones of interstate freeways in Ohio. IEEE Intelligent Transportation Systems Conference, 1642–1647.
  • Saltelli, A. (2019). A short comment on statistical versus mathematical modelling. Nature Communications, 10(1), 1–3. Retrieved from https://www.nature.com/articles/s41467-019-11865-8 doi:10.1038/s41467-019-11865-8
  • See, C. (2005). Crash analysis of work zone lane closures with left-hand merge and downstream lane shift. Kansas City: University of Missouri. Retrieved from https://kuscholarworks.ku.edu/bitstream/handle/1808/4162/umi-ku-2645_1.pdf;jsessionid=C8219F2411B5072F28BE6811117FFA1B?sequence=1
  • Siddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety analysis of traffic zones. Accident Analysis and Prevention, 45, 317–325. doi:10.1016/j.aap.2011.07.019
  • Stewart, M. (2020). Guide to interpretable machine learning. Retrieved March 31, 2021, from https://towardsdatascience.com/guide-to-interpretable-machine-learning-d40e8a64b6cf
  • Strumbel, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game theory. Journal of Machine Learning Research, 11, 1–18.
  • Sze, N. N., & Song, Z. (2019). Factors contributing to injury severity in work zone related crashes in New Zealand. International Journal of Sustainable Transportation, 13(2), 148–154. doi:10.1080/15568318.2018.1452083
  • Tang, J., Liang, J., Han, C., Li, Z., & Huang, H. (2019). Crash injury severity analysis using a two-layer Stacking framework. Accident Analysis and Prevention, 122, 226–238.
  • Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer2V Verlag.
  • Weng, J., & Meng, Q. (2011). Analysis of driver casualty risk for different work zone types. Accident Analysis and Prevention, 43(5), 1811–1817. doi:10.1016/j.aap.2011.04.016
  • Weng, J., & Meng, Q. (2012). Effects of environment, vehicle and driver characteristics on risky driving behavior at work zones. Safety Science, 50(4), 1034–1042. doi:10.1016/j.ssci.2011.12.005
  • Weng, J., Meng, Q., & Wang, D. (2013). Tree‐based logistic regression approach for work zone casualty risk assessment. Risk Analysis, 33(3), 493–504.
  • Weng, J., Zhu, J.-Z., Yan, X., & Liu, Z. (2016). Investigation of work zone crash casualty patterns using association rules. Accident Analysis and Prevention, 92, 43–52.
  • Work/Construction Zones. (2008). Retrieved January 31, 2021, from https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/workzones.pdf
  • Xie, Y. C., Lord, D., & Zhang, Y. L. (2007). Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis. Accident Analysis and Prevention, 39(5), 922–933.
  • Yang, H., Ozbay, K., Ozturk, O., & Yildirimoglu, M. (2013). Modeling work zone crash frequency by quantifying measurement errors in work zone length. Accident Analysis & Prevention, 55, 192–201. doi:10.1016/j.aap.2013.02.031
  • Yang, H., Ozbay, K., Ozturk, O., & Xie, K. (2015). Work zone safety analysis and modeling: A state-of-the-art review. Traffic Injury Prevention, 16(4), 387–396.
  • Yu, R., & Abdel-Aty, M. (2013). Utilizing support vector machine in real-time crash risk evaluation. Accident Analysis and Prevention, 51, 252–259.
  • Zhang, J., Li, Z., Pu, Z., & Xu, C. (2018). Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access, 6, 60079–60087. doi:10.1109/ACCESS.2018.2874979
  • Zhang, Y., & Xie, Y. (2007). Forecasting of short-term freeway volume with v-support vector machines. Transportation Research Record: Journal of the Transportation Research Board, 2024(1), 92–99. doi:10.3141/2024-11
  • Zheng, Z., Lu, P., & Lantz, B. (2018). Commercial truck crash injury severity analysis using gradient boosting data mining model. Journal of Safety Research, 65, 115–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.