206
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of the use of sarcosine, proline and glycine as acrylamide inhibitors in ripe olive processing

, , &
Pages 242-249 | Received 25 Sep 2013, Accepted 26 Nov 2013, Published online: 14 Feb 2014

References

  • Amrein TM, Andres L, Escher F, Amadó R. 2007. Occurrence of acrylamide in selected foods and mitigation options. Food Addit Contam A. 24:13–25.
  • Amrein TM, Schiónbochler B, Rohner F, Lukac H, Schneider H, Keiser A, Escher F, Amadó R. 2004. Potential for acrylamide formation in potatoes: data from the 2003 harvest. Eur Food Res Technol. 219:572–578.
  • Brotzel F, Mayr H. 2007. Nucleophilicities of amino acids and peptides. Org Biomol Chem. 5:3814–3820.
  • Casado FJ, Montaño A. 2008. Influence of processing conditions on acrylamide content in black ripe olives. J Agric Food Chem. 56:2021–2027.
  • Casado FJ, Montaño A, Spitzner D, Carle R. 2013. Investigations into acrylamide precursors in sterilized table olives: evidence of a peptic fraction being responsable for acrylamide formation. Food Chem. 141:1158–1165.
  • Casado FJ, Sánchez AH, Montaño A. 2010. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 119:161–166.
  • Claus A, Mongili M, Weisz G, Schieber A, Carle R. 2008. Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. J Cereal Sci. 47:546–554.
  • De Castro A, García P, Romero C, Brenes M, Garrido A. 2007. Industrial implementation of black ripe olive storage under acid conditions. J Food Eng. 80:1206–1212.
  • European Commission. 2011. Commission regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off J Eur Union L 295/1 [Internet; cited 2013 Sep 24]. Available from: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:295:0001:0177:En:PDF
  • Fernández MJ, Garrido A. 1971. Aceitunas negras por oxidación en medio alcalino I. El color como criterio de madurez y de calidad en el producto elaborado. Grasas Aceites. 22:193–199.
  • Friedman M. 2010. Origin, microbiology, nutrition, and pharmacology of D-amino acids. Chem Biodivers. 7:1491–1530.
  • García P, Brenes M, Romero C, Garrido A. 1999. Color and texture of acidified ripe olives in pouches. J Food Sci. 64:248–251.
  • Hoenicke K, Gatermann R. 2005. Studies on the stability of acrylamide in food during storage. J AOAC Int. 88:268–273.
  • International Agency for Research on Cancer. 1994. Monographs on the evaluation of carcinogen risks to humans: Some industrial chemicals. Acrylamide. Lyon: International Agency for Research on Cancer; p. 389–433.
  • International Olive Oil Council. 2004. Trade standard applying to table olives. Document COI/OT/NC no. 1. Madrid: International Olive Council [Internet; cited 2013 Sep 24]. Available from: http://www.internationaloliveoil.org/
  • Kampel D, Kupferschmidt R, Lubec G. 1990. Toxicity of D-proline. In: Lubec G, Rosenthal GA, editors. Amino acid: chemistry, biology and medicine. Leiden (Netherlands): Escom Science Publishers; p. 1164.
  • Koutsidis G, Simons SPJ, Thong YH, Haldoupis Y, Mojica-Lazaro J, Wedzicha BL, Mottram DS. 2009. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. J Agric Food Chem. 57:9011–9015.
  • Kwak E-J, Lim S-I. 2004. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Amino Acids. 27:85–90.
  • Lawless HT, Heymann H. 2010. Sensory evaluation of food. Principles and practices. 2nd ed. New York: Springer.
  • Liu J, Chen F, Man Y, Dong J, Hu X. 2011. The pathways for the removal of acrylamide in model systems using glycine based on the identification of reaction products. Food Chem. 128:442–449.
  • López-López A, Beato VM, Sánchez AH, García-García P, Montaño A. 2014. Effects of selected amino acids and water-soluble vitamins on acrylamide formation in a ripe olive model system. J Food Eng. 120:9–16.
  • Marsilio V, Campestre C, Lanza B. 2001. Phenolic compounds change during California-style ripe olive processing. Food Chem. 74:55–60.
  • Montaño A, Sánchez AH, de Castro A. 2000. Changes in the amino acid composition of green olive brine due to fermentation by pure culture of bacteria. J Food Sci. 65:1022–1027.
  • Rizzi GP. 2006. Formation of Strecker aldehydes from polyphenol-derived quinones and α-amino acids in a nonenzymic model system. J Agric Food Chem. 54:1893–1897.
  • Sánchez AH, García P, Rejano L. 2006. Elaboration of table olives. Grasas Aceites. 57:86–94.
  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 50:4998–5006.
  • Taubert D, Halfinger S, Henkes L, Berkels R, Schöming E. 2004. Influence of processing parameters on acrylamide formation during frying of potatoes. J Agric Food Chem. 52:2735–2739.
  • United States Food and Drug Administration. 2006. Survey data on acrylamide in food: individual food products [Internet; cited 2013 Sep 24]. Available from: http://www.fda.gov/Food/FoodborneIllnessContaminants/ChemicalContaminants/ucm053549.htm

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.