161
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical determination of Sudan I in food products using a carbon nanotube-ionic liquid composite modified electrode

, &
Pages 1818-1825 | Received 09 Jul 2014, Accepted 18 Sep 2014, Published online: 28 Oct 2014

References

  • Abbaspour A, Ghaffarinejad A. 2010. Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine. Electrochim Acta. 55:1090–1096.
  • Adeloju SBO, Pablo F. 1994. Adsorptive cathodic stripping voltammetric determination of ultra-trace concentrations of vanadium on a glassy carbonmercury film electrode. Analy Chimi Acta. 288:157–166.
  • Agüí L, Yáñez-Sedeño P, Pingarrón JM. 2008. Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta. 622:11–47.
  • An Y, Jiang LP, Cao J, Geng CY, Zhong LF. 2007. Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutation Res / Genet Toxicol Environ Mutagenesis. 627:164–170.
  • Analytical Methods Committee. 1987. Recommendations for the definition estimation and use of the detection limit. Analyst. 112:199–204.
  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. 2009. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 8:621–629.
  • Bruno F, Pham MC, Dubois JE. 1977. Polaromicrotribometric study of polypheny-lene oxide film formation on metal electrodes by electrolysis of disubstitutedphenols. Electrochim Acta. 22:451–457.
  • Chailapakul O, Wonsawat W, Siangproh W, Grudpan K, Zhao YF, Zhu ZW. 2008. Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chem. 109:876–882.
  • Chen D, Li X, Tao Y, Pan Y, Wu Q, Liu Z, Peng D, Wang X, Huang L, Wang Y, Yuan Z. 2013. Development of a liquid chromatography–tandem mass spectrometry with ultrasound-assisted extraction method for the simultaneous determination of sudan dyes and their metabolites in the edible tissues and eggs of food-producing animals. J Chromatogr B. 939:45–50.
  • Donna LD, Maiuolo L, Mazzotti F, Luca DD, Sindona G. 2004. Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Anal Chem. 76:5104–5108.
  • Goornavar V, Jeffers R, Biradar S, Ramesh GT. 2014. Utilization of highly purified single wall carbon nanotubes dispersed in polymer thin films for an improved performance of an electrochemical glucose sensor. Mater Sci Engin C. 40:299–307.
  • He LM, Su YJ, Fang BH, Shen XG, Zeng ZL, Liu YH. 2007. Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography-mass spectrometry. Anal Chim Acta. 594:139–146.
  • Hou XL, Li YG, Cao SJ, Zhang ZW, Wu YN. 2010. Analysis of para red and sudan dyes in egg yolk by UPLC-MS-MS. Chromatographia. 71:135–138.
  • Hu X, Cai Q, Fan Y, Ye T, Cao Y, Guo C. 2012. Molecularly imprinted polymer coated solid-phase microextraction fibers for determination of Sudan I–IV dyes in hot chili powder and poultry feed samples. J Chromatogr A. 1219:39–46.
  • Hu C, Hu S. 2004. Electrochemical characterization of cetyltrimethyl ammonium bromide modified carbon paste electrode and the application in the immobilization of DNA. Electrochim Acta. 49:405–412.
  • Hu S, Yan Y, Zhao Z. 1991. Determination of progesterone based on the enhancement effect of surfactants in linear sweep polarography. Analy Chimi Acta. 248:103–108.
  • James F. 1997. Molecular aspects of electron transfer at electrodes in micellar solutions. Colloi Surf A. 123:81–88.
  • Kachoosangi RT, Musameh MM, Yousef IA, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG. 2009. Carbon nanotube−ionic liquid composite sensors and biosensors. Anal Chem. 81:435–442.
  • Lahiff E, Lynam C, Gilmartin N, Kennedy R, Diamond D. 2010. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem. 398:1575–1589.
  • Lin H, Li G, Wu K. 2008. Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chem. 107:531–536.
  • Liu W, Zhang J, Zhang C, Ren L. 2011. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chem Eng J. 171:431–438.
  • Long C, Mai Z, Yang X, Zhu B, Xu X, Huang X, Zou X. 2011. A new liquid-liquid extraction method for determination of 6 azo-dyes in chilli products by highperformance liquid chromatography. Food Chem. 126:1324–1329.
  • Ma X, Chao M, Wang Z. 2013. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem. 138:739–744.
  • MansouriMajd S, Teymourian H, Salimi A, Hallaj R. 2013. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochim Acta. 108:707–716.
  • Mazloum-Ardakani MA, Khoshroo A. 2014. High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/ionic liquid: Determination of some catecholamines. Electrochem Commun. 42:9–12.
  • Mejia E, Ding Y, Mora MF, Garcia CD. 2007. Determination of banned sudan dyes in chili powder by capillary electrophoresis. Food Chem. 102:1027–1033.
  • Mo Z, Zhang Y, Zhao F, Xiao F, Guo G, Zeng B. 2010. Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant-ionic liquid-multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chem. 121:233–237.
  • Nagy G, Kapui I, Gorton LO. 1995. Effect of surfactants on the signal of chemically modified amperometric electrodes. Sens Actuat B. 24:323–327.
  • Rezaei B, Rahmanian O, Ensafi AA. 2014. An electrochemical sensor based on multiwall carbon nanotubes and molecular imprinting strategy for warfarin recognition and determination. Sens Actua B. 196:539–545.
  • Sun P, Armstrong DW. 2010. Ionic liquids in analytical chemistry. Anal Chim Acta. 661:1–16.
  • Tateo F, Bononi MJ. 2004. Fast determination of Sudan I by HPLC/APCI-MS in hot chilli, spices, and oven-baked foods. J Agri Food Chem. 52:655–658.
  • Tuzhi P, Yang Z, Lu R. 1991. Voltammetric measurement of haloperidol following adsorptive accumulation at glassy carbon electrodes. Talanta. 38:741–745.
  • Vittal R, Gomathi H, Kim K-J. 2006. Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Adv Colloid Interface Sci. 119:55–68.
  • Wang J, Cai X, Fernandes JR, Ozsoz M, Grant DH. 1997. Adsorptive potentiometric stripping analysis of trace tamoxifen at a glassy carbon electrode. Talanta. 45:273–278.
  • Wu Y. 2010. Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chem. 121:580–584.
  • Yang CH, Zhao J, Xu JH, Hu CG, Hu SS. 2009. A highly sensitive electrochemical method for the determination of Sudan I at polyvinylpyrrolidone modified acetylene black paste electrode based on enhancement effect of sodium dodecyl sulphate. Int J Environ Anal Chem. 89:233–244.
  • Yang D, Zhu L, Jiang X. 2010. Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J Electroanal Chem. 640:17–22.
  • Yin H, Zhou Y, Meng X, Tang T, Ai S, Zhu L. 2011. Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem. 127:1348–1353.
  • Zhu ZH, Qu LN, Li X, Zeng Y, Sun W, Huang XT. 2010. Direct electrochemistry and electrocatalysis of hemoglobin with carbon nanotube-ionic liquid-chitosan composite materials modified carbon ionic liquid electrode. Electrochim Acta. 55:5959–5965.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.