284
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Relative importance and interactions of furan precursors in sterilised, vegetable-based food systems

, , , , , , & show all
Pages 193-206 | Received 16 Sep 2015, Accepted 08 Nov 2015, Published online: 23 Dec 2015

References

  • Adebooye OC, Vijayalakshmi R, Singh V. 2008. Peroxidase activity, chlorophylls and antioxidant profile of two leaf vegetables (Solanum nigrum L. and Amaranthus cruentus L.) under six pretreatment methods before cooking. Int J Food Sci Technol. 43:173–178.
  • Becalski A, Hayward S, Krakalovich T, Pelletier L, Roscoe V, Vavasour E. 2010. Development of an analytical method and survey of foods for furan, 2-methylfuran and 3-methylfuran with estimated exposure. Food Addit Contam Part A. 27:764–775.
  • Becalski A, Seaman S. 2005. Furan precursors in food: a model study and development of a simple headspace method for determination of furan. J AOAC Int. 88:102–106.
  • Belitz HD, Grosch W, Schieberle P. 2009. Food chemistry. Berlin: Springer-Verlag.
  • Bolger PM, Tao SSH, Dinovi M. 2008. Hazards of dietary furan. In Stadler RH, Lineback DR, editors. Process-induced food contaminants: occurrence, formation, mitigation, and health risks. Hoboken (NJ): John Wiley & Sons; p. 117–133.
  • Crews C, Castle L. 2007. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci Technol. 18:365–372.
  • Esteve MJ, Frigola A, Martorell L, Rodrigo C. 1999. Kinetics of green asparagus ascorbic acid heated in a high-temperature thermoresistometer. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung a-Food Research and Technology. 208:144–147.
  • [EFSA] European Food Safety Authority. 2011. Update on furan levels in food from monitoring years 2004-2010 and exposure assessment. EFSA J. 9:1–33.
  • Fan XT. 2005. Formation of furan from carbohydrates and ascorbic acid following exposure to ionizing radiation and thermal processing. J Agric Food Chem. 53:7826–7831.
  • Gill S, Kavanagh M, Cherry W, Barker M, Weld M, Cooke GM. 2014a. A 28-day Gavage toxicity study in Fischer 344 rats with 3-methylfuran. Toxicol Pathol. 43:221–232.
  • Gill SS, Kavanagh M, Cherry W, Barker M, Weld M, Cooke GM. 2014b. A 28-day Gavage toxicity study in male Fischer 344 rats with 2-methylfuran. Toxicol Pathol. 42:352–360.
  • Goos P, Jones B. 2011. Optimal design of experiments: a case study approach. Hoboken (NJ): John Wiley & Sons.
  • Huang XS, Duan HY, Barringer SA. 2011. Effects of buffer and temperature on formation of furan, acetic acid and formic acid from carbohydrate model systems. Lwt-Food Sci Technol. 44:1761–1765.
  • [IARC] International Agency for Research on Cancer. 1995. Dry cleaning, some chlorinated solvents and other industrial chemicals. IARC Monogr Eval Carcinog Risks Hum. 63:393–407.
  • Jestoi M, Järvinen T, Järvenpää E, Tapanainen H, Virtanen S, Peltonen K. 2009. Furan in the baby-food samples purchased from the Finnish markets - Determination with SPME-GC-MS. Food Chem. 117:522–528.
  • Joint FAO/WHO Codex Committee on Contaminants in Foods. 2011. Discussion paper on furan (CX/CF 11/5/13).
  • Knockaert G, De Roeck A, Lemmens L, Van Buggenhout S, Hendrickx M, Van Loey A. 2011. Effect of thermal and high pressure processes on structural and health-related properties of carrots (Daucus carota). Food Chem. 125:903–912.
  • Limacher A, Kerler J, Conde-Petit B, Blank I. 2007. Formation of furan and methylfuran from ascorbic acid in model systems and food. Food Addit Contam. 24:122–135.
  • Limacher A, Kerler J, Davidek T, Schmalzried F, Blank I. 2008. Formation of furan and methylfuran by Maillard-type reactions in model systems and food. J Agric Food Chem. 56:3639–3647.
  • Locas CP, Yaylayan VA. 2004. Origin and mechanistic pathways of formation of the parent furan - a food toxicant. J Agric Food Chem. 52:6830–6836.
  • Märk J, Pollien P, Lindinger C, Blank I, Märk T. 2006. Quantitation of furan and methylfuran formed in different precursor systems by proton transfer reaction mass spectrometry. J Agric Food Chem. 54:2786–2793.
  • Mesías-García M, Guerra-Hernández E, García-Villanova B. 2010. Determination of Furan Precursors and some thermal damage markers in baby foods: ascorbic acid, dehydroascorbic acid, hydroxymethylfurfural and furfural. J Agric Food Chem. 58:6027–6032.
  • Mogol BA, Gökmen V. 2013. Kinetics of furan formation from ascorbic acid during heating under reducing and oxidizing conditions. J Agric Food Chem. 61:10191–10196.
  • Oey I, Verlinde P, Hendrickx M, Van Loey A. 2006. Temperature and pressure stability of L-ascorbic acid and/or [6s] 5-methyltetrahydrofolic acid: a kinetic study. Eur Food Res Technol. 223:71–77.
  • Owczarek-Fendor A, De Meulenaer B, Scholl G, Adams A, Van Lancker F, Eppe G, De Pauw E, Scippo M-L, De Kimpe N. 2011. Furan formation from lipids in starch-based model systems, as influenced by interactions with antioxidants and proteins. J Agric Food Chem. 59:2368–2376.
  • Owczarek-Fendor A, De Meulenaer B, Scholl G, Adams A, Van Lancker F, Eppe G, De Pauw E, Scippo M-L, De Kimpe N. 2012. Furan formation in starch-based model systems containing carbohydrates in combination with proteins, ascorbic acid and lipids. Food Chem. 133:816–821.
  • Owczarek-Fendor A, De Meulenaer B, Scholl G, Adams A, Van Lancker F, Yogendrarajah P, Eppe G, De Pauw E, Scippo M-L, De Kimpe N. 2010a. Furan formation from vitamin C in a starch-based model system: influence of the reaction conditions. Food Chem. 121:1163–1170.
  • Owczarek-Fendor A, De Meulenaer B, Scholl G, Adams A, Van Lancker F, Yogendrarajah P, Uytterhoeven V, Eppe G, De Pauw E, Scippo M-L, De Kimpe N. 2010b. Importance of fat oxidation in starch-based emulsions in the generation of the process contaminant furan. J Agric Food Chem. 58:9579–9586.
  • Palmers S, Grauwet T, Buvé C, Van de Vondel L, Kebede BT, Hendrickx ME, Van Loey A. 2015a. Furan formation during storage and reheating of sterilised vegetable purées. Food Addit Contam Part A. 32:161–169.
  • Palmers S, Grauwet T, Celus M, Kebede BT, Hendrickx ME, Van Loey A. 2015b. Furan formation as a function of pressure, temperature and time conditions in spinach pur+®e. LWT Food Sci Technol. 64:565–570.
  • Palmers S, Grauwet T, Celus M, Wibowo S, Kebede BT, Hendrickx ME, Van Loey A. 2015c. A kinetic study of furan formation during storage of shelf-stable fruit juices. J Food Eng. 165:74–81.
  • Palmers S, Grauwet T, Kebede BT, Hendrickx ME, Van Loey A. 2014. Reduction of furan formation by high-pressure high-temperature treatment of individual vegetable purées. Food Bioprocess Technol. 7:2679–2693.
  • Rijksinstituut voor Volksgezondheid en Milieu. 2013. Nederlandse Voedingsstoffenbestand (NEVO).
  • Rojas AM, Gerschenson LN. 2001. Ascorbic acid destruction in aqueous model systems: an additional discussion. J Sci Food Agric. 81:1433–1439.
  • Sevenich R, Bark F, Kleinstueck E, Crews C, Pye C, Hradecky J, Reineke K, Lavilla M, Martinez-de-Maranon I, Briand JC, Knorr D. 2015. The impact of high pressure thermal sterilization on the microbiological stability and formation of food processing contaminants in selected fish systems and baby food puree at pilot scale. Food Control. 50:539–547.
  • Sevenich R, Kleinstueck E, Crews C, Anderson W, Pye C, Riddellova K, Hradecky J, Moravcova E, Reineke K, Knorr D. 2014. High-pressure thermal sterilization: food safety and food quality of baby food puree. J Food Sci. 79:M230–M237.
  • [FDA] US Food and Drug Administration. 2009. Exploratory data on furan in food: individual food products.
  • Van Lancker F, Adams A, Owczarek-Fendor A, De Meulenaer B, De Kimpe N. 2011. Mechanistic insights into furan formation in Maillard model systems. J Agric Food Chem. 59:229–235.
  • Verbeyst L, Bogaerts R, Van der Plancken I, Hendrickx M, Van Loey A. 2013. Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruit. Food Bioprocess Technol. 6:1015–1023.
  • Vervoort L, Van der Plancken I, Grauwet T, Verlinde P, Matser A, Hendrickx M, Van Loey A. 2012. Thermal versus high pressure processing of carrots: a comparative pilot-scale study on equivalent basis. Innovative Food Science & Emerging Technologies. 15:1–13.
  • Yaylayan VA. 2006. Precursors, formation and determination of furan in food. J Verbr Lebensm. 1:5–9.
  • Zamora R, Hidalgo FJ. 2008. Contribution of lipid oxidation products to acrylamide formation in model systems. J Agric Food Chem. 56:6075–6080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.