423
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum

, , &
Pages 1254-1264 | Received 10 Mar 2016, Accepted 27 May 2016, Published online: 30 Jun 2016

References

  • Audenaert K, Vanheule A, Höfte M, Haesaert G. 2013. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins (Basel). 6:1–19.
  • Bai GH, Desjardins AE, Plattner RD. 2002. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia. 153:91–98.
  • Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. 2013. Masked mycotoxins: a review. Mol Nutr Food Res. 57:165–186.
  • Berthiller F, Dall’Asta C, Schuhmacher R, Lemmens M, Adam G, Krska AR. 2005. Masked mycotoxins: determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 53:3421–3425.
  • Boutigny AL, Richard-Forget F, Barreau C. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol. 121:411–423.
  • Cole DJ, Edwards R. 2000. Secondary metabolism of agrochemicals in plants. In: Roberts T, editor. Metabolism of agrochemicals in plants. New York (NY): Wiley; p. 107–154.
  • Coleman JOD, Mma B-K, Davies TGE. 1997. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 2:144–151.
  • Dall’Erta A, Cirlini M, Dall’Asta M, Del Rio D, Galaverna G, Dall’Asta C. 2013. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol. 26:305–312.
  • Desjardins AE. 2006. Fusarium mycotoxins-chemistry, genetics, and biology. St. Paul (MN): American Phytopathological Society Press. Chapter 1, Trichothecenes; p. 13–64.
  • Gratz SW, Duncan G, Richardson AJ. 2013. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxy-deoxynivalenol. Appl Environ Microbiol. 79:1821–1825.
  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy A, Krska R, Ruckenbauer P. 2005. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact. 18:1318–1324.
  • Li FA, Yu CC, Shao B, Wang W, Yu HX. 2011. Natural occurrence of masked deoxynivalenol and multi-mycotoxins in cereals from China harvested in 2007 and 2007. Ch J Prev Med. 45:57–63.
  • Li X, Sanghyun S, Heinen S, Dill-Macky R, Berthiller F, Nersesian N, Clemente T, McCormick S, Muehlbauer G. 2015. Transgenic wheat expressing a barley UDP-glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol Plant Microbe Interact. 28:1237–1246.
  • McCormick S. 2003. The role of DON in pathogenicity. In: Leonard KJ, Bushnell WR, editors. Fusarium head blight of wheat and barley. St. Paul (MN): The American Phytopathological Society; p. 35–43.
  • Mesterházy Á. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur J Plant Pathol. 108:675–684.
  • Nagl V, Woechtl B, Schwartz-Zimmermann HE, Hennig-Pauka I, Moll WD, Adam G, Berthiller F. 2014. Metabolism of the masked mycotoxin deoxynivalenol-3-glucoside in pigs. Toxicol Lett. 229:190–197.
  • Ovando-Martínez M, Ozsisli B, Anderson J, Whitney K, Ohm JB, Simsek S. 2013. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat inoculated with Fusarium graminearum. Toxins (Basel). 5:2522–2532.
  • Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glössl J, Luschnig C, Adam G. 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem. 278:47905–47914.
  • Puri KD, Zhong S. 2010. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology. 100:1007–1014.
  • Rychlik M, Humpf H, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N. 2014. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Res. 30:197–205.
  • Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F, Lemmens M, Muehlbauer GJ, Adam G. 2010. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant Microbe Interact. 23:977–986.
  • Seed Manitoba. 2015. Variety selection and growers source guide. Manitoba: Manitoba Agriculture, Food and Rural Development, and the Manitoba Seed Grower’s Association; p. 38–40.
  • Siegwart G, Schweiger W, Warth B, Michlmayr H, Vautrin S, Steiner B, Krska R, Schuhmacher R, Berges H, Buerstmayr H, Adam G. 2015. How does the Fhb1 locus of wheat affect the ability to detoxify DON – a hypothesis. In: Canty S, Clark A, Vukasovich S, Van Sanford D, editors. Proceedings of the 2015 national head blight forum; 2015 Dec 6; MI/Lexington, KY: U.S. Wheat and Barley Scab Initiative; p. 51.
  • Stack R, McMullen M. 1995. A visual scale to estimate severity of Fusarium head blight of wheat [Internet]. [cited 2015 Jul 28]. Available from: http://www.ag.ndsu.edu/pubs/plantsci/smgrains/pp1095.pdf
  • Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G. 2013. Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins (Basel). 5:504–523.
  • Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, Starkey DE, Gilbert J, Geiser DM, Nowicki TW. 2008. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 45:473–484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.