229
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Feasibility of a novel multispot nanoarray for antibiotic screening in honey

, , , &
Pages 562-572 | Received 02 Oct 2016, Accepted 01 Jan 2017, Published online: 16 Feb 2017

References

  • An H, Parrales L, Wang K, Cain T, Hollins R, Forrest D, Liao B, Paek HC, Sram J. 2015. Quantitative analysis of nitrofuran metabolites and chloramphenicol in shrimp using acetonitrile extraction and liquid chromatograph-tandem mass spectrometric detection: a single laboratory validation. J AOAC Int. 98:602–608.
  • Cheng C, Hsieh K, Lei Y, Tai Y, Chang T, Sheu S, Li W, Kuo T. 2009. Development and Residue Screening of the Furazolidone Metabolite, 3-Amino-2-oxazolidinone (AOZ), in Cultured Fish by an Enzyme-Linked Immunosorbent Assay. J Agric Food Chem. 57:5687–5692.
  • Commission regulation (EC) No 1442/95 of 26 June 1995 amending annexes I, II, III and IV of council regulation (EEC) No 2377/90 laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. 1995. Off J Eur Union. L143:26–30.
  • Conneely A, Nugent A, O’Keeffe M, Mulder P, Van Rhijn J, Kovacsics L, Fodor A, McCracken R, Kennedy D. 2003. Isolation of bound residues of nitrofuran drugs from tissue by solid-phase extraction with determination by liquid chromatography with UV and tandem mass spectrometric detection. Anal Chim Acta. 483:91–98.
  • Cooper K, Caddell A, Elliott C, Kennedy D. 2004a. Production and characterisation of polyclonal antibodies to a derivative of 3-amino-2-oxazolidinone, a metabolite of the nitrofuran furazolidone. Anal Chim Acta. 520:79–86.
  • Cooper K, Elliott C, Kennedy D. 2004b. Detection of 3-amino-2-oxazolidinone (AOZ), a tissue-bound metabolite of the nitrofuran furazolidone, in prawn tissue by enzyme immunoassay. Food Addit Contam. 21:841–848.
  • Cooper K, Mulder P, Van Rhijn J, Kovacsics L, McCracken R, Young P, Kennedy D. 2005. Depletion of four nitrofuran antibiotics and their tissue-bound metabolites in porcine tissues and determination using LC-MS/MS and HPLC-UV. Food Addit Contam. 22:406–414.
  • Cooper KM, Kennedy DG. 2007. Stability studies of the metabolites of nitrofuran antibiotics during storage and cooking. Food Addit Contam. 24:935–942.
  • Cooper KM, Samsonova JV, Plumpton L, Elliott CT, Kennedy DG. 2007. Enzyme immunoassay for semicarbazide - The nitrofuran metabolite and food contaminant. Anal Chim Acta. 592:64–71.
  • Council regulation (EEC) No 2377/90 of 26 June 1990 laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. 1990. Off J Eur Union. L224:1–8.
  • Crews C. 2012. Potential natural sources of semicarbazide in honey. Report for the Food Standards Agency in Scotland. Project code FS241065. [ cited 2016 Dec 12]. Available from: https://www.food.gov.uk/sites/default/files/semicarbazide_in_honey.pdf.
  • Diblikova I, Cooper K, Kennedy D, Franek M. 2005. Monoclonal antibody-based ELISA for the quantification of nitrofuran metabolite 3-amino-2-oxazolidinone in tissues using a simplified sample preparation. Anal Chim Acta. 540:285–292.
  • Douny C, Widart J, De Pauw E, Maghuin-Rogister G, Scippo M. 2013. Determination of chloramphenicol in Honey, Shrimp, and poultry meat with liquid chromatography-mass spectrometry: validation of the method according to Commission Decision 2002/657/EC. Food Anal Methods. 6:1458–1465.
  • El-Demerdash A, Song F, Reel RK, Hillegas J, Smith RE. 2015. Simultaneous determination of nitrofuran metabolites and chloramphenicol in shrimp with a single extraction and LC-MS/MS analysis. J AOAC Int. 98:595–601.
  • European Commission Decision (EC) No 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun. L221:8–34.
  • Ferguson J, Baxter A, Young P, Kennedy G, Elliott C, Weigel S, Gatermann R, Ashwind H, Stead S, Sharman M. 2005. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex((R)) kit chloramphenicol. Anal Chim Acta. 529:109–113.
  • Fodey T, Murilla G, Cannavan A, Elliott C. 2007. Characterisation of antibodies to chloramphenicol, produced in different species by enzyme-linked immunosorbent assay and biosensor technologies. Anal Chim Acta. 592:51–57.
  • Gao F, Feng S, Chen Z, Li-Chan ECY, Grant E, Lu X. 2014. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny-based SERS nano-biosensor. J Food Sci. 79:2542–2549.
  • Guo L, Song S, Liu L, Peng J, Kuang H, Xu C. 2015. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Biomedical Chromatogr. 29:1432–1439.
  • Han J, Wang Y, Yu C, Yan Y, Xie X. 2011. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography. Anal Bioanal Chem. 399:1295–1304.
  • Jimenez JJ, Jimenez JG, Daghistani DYunis AA. 1990. Interaction of chloramphenicol and metabolites with colony stimulating factors: possible role in chloramphenicol-induced bone marrow injury. Am J Med Sci. 300:350-353.
  • Jin W, Yang G, Shao H, Qin A. 2014. A label-free impedimetric immunosensor for detection of 1-aminohydantoin residue in food samples based on sol-gel embedding antibody. Food Control. 39:185–191.
  • Jin W, Yang G, Wu L, Wang Q, Shao H, Qin A, Yu B, Li D, Cai B. 2011. Detecting 5-morpholino-3-amino-2-oxazolidone residue in food with label-free electrochemical impedimetric immunosensor. Food Control. 22:1609–1616.
  • Kara M, Uzun L, Kolayli S, Denizli A. 2013. Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey. J Appl Polym Sci. 129:2273–2279.
  • Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. 2015. Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry. Anal Chim Acta. 862:41–52.
  • Kloth K, Niessner R, Seidel M. 2009a. Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron. 24:2106–2112.
  • Kloth K, Rye-Johnsen M, Didier A, Dietrich R, Märtlbauer E, Niessner R, Seidel M. 2009b. A regenerable immunochip for the rapid determination of 13 different antibiotics in raw milk. Analyst. 134:1433–1439.
  • Li J, Liu JX, Wang JP. 2009. Multidetermination of four nitrofurans in animal feeds by a sensitive and simple enzyme-linked immunosorbent assay. J Agric Food Chem. 57:2181–2185.
  • Liu N, Song S, Lu L, Nie D, Han Z, Yang X, Zhao Z, Wu A, Zheng X. 2014. A rabbit monoclonal antibody-based sensitive competitive indirect enzyme-linked immunoassay for rapid detection of chloramphenicol residue. Food Agric Immunol. 25:523–534.
  • Liu Y, Jiang W, Chen Y, Zeng P, Zhang M, Wang Q. 2015. Simultaneous detection of four nitrofuran metabolites in honey using high-throughput suspension array technology. Anal Methods. 7:4097–4103.
  • Lopez MI, Feldlaufer MF, Williams AD, Chu P. 2007. Determination and confirmation of nitrofuran residues in honey using LC-MS/MS. J Agric Food Chem. 55:1103–1108.
  • McCracken R, Kennedy D. 1997. The bioavailability of residues of the furazolidone metabolite 3-amino-2-oxazolidinone in porcine tissues and the effect of cooking upon residue concentrations. Food Addit Contam. 14:507–513.
  • McGrath TF, McClintock L, Dunn JS, Husar GM, Lochhead MJ, Sarver RW, Klein FE, Rice JA, Campbell K, Elliott CT. 2015. Development of a rapid multiplexed assay for the direct screening of antimicrobial residues in raw milk. Anal Bioanal Chem. 407:4459–4472.
  • O’Keeffe M, Conneely A, Cooper K, Kennedy D, Kovacsics L, Fodor A, Mulder P, Van Rhijn J, Trigueros G. 2004. Nitrofuran antibiotic residues in pork The FoodBRAND retail survey. Anal Chim Acta. 520:125–131.
  • O’Mahony J, Moloney M, McConnell RI, Benchikh EO, Lowry P, Furey A, Danaher M. 2011. Simultaneous detection of four nitrofuran metabolites in honey using a multiplexing biochip screening assay. Biosens Bioelectron. 26:4076–4081.
  • Points J, Burns DT, Walker M. 2015. Forensic issues in the analysis of trace nitrofuran veterinary residues in food of animal origin. Food Control. 50:92–103.
  • Thompson CS, Traynor IM, Fodey TL, Crooks SRH, Kennedy DG. 2011. Screening method for the detection of a range of nitrofurans in avian eyes by optical biosensor. Anal Chim Acta. 700:177–182.
  • Tribalat L, Paisse O, Dessalces G, Grenier-Loustalot M. 2006. Advantages of LC-MS-MS compared to LC-MS for the determination of nitrofuran residues in honey. Anal Bioanal Chem. 386:2161–2168.
  • Vass M, Hruska K, Franek M. 2008. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Vet Med. 53:469–500.
  • Veach BT, Baker CA, Kibbey JH, Fong A, Broadaway BJ, Drake CP. 2015. Quantitation of chloramphenicol and nitrofuran metabolites in aquaculture products using microwave-assisted derivatization, automated SPE, and LC-MS/MS. J AOAC Int. 98:588–594.
  • Vivekanandan K, Swamy M, Prasad S, Mukherjee R. 2005. A simple method of isolation of chloramphenicol in honey and its estimation by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 19:3025–3030.
  • Wutz K, Niessner R, Seidel M. 2011. Simultaneous determination of four different antibiotic residues in honey by chemiluminescence multianalyte chip immunoassays. Microchim Acta. 173:1–9.
  • Yan L, Luo C, Cheng W, Mao W, Zhang D, Ding S. 2012. A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release. J Electroanal Chem. 687:89–94.
  • Yang G, Jin W, Wu L, Wang Q, Shao H, Qin A, Yu B, Li D, Cai B. 2011. Development of an impedimetric immunosensor for the determination of 3-amino-2-oxazolidone residue in food samples. Anal Chim Acta. 706:120–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.