600
Views
20
CrossRef citations to date
0
Altmetric
Articles

Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: a review

, &
Pages 1959-1974 | Received 12 Feb 2018, Accepted 22 Jul 2018, Published online: 15 Aug 2018

References

  • Alizadeh T, Zare M, Ganjali MR, Norouzi P, Tavana B. 2010. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2, 4, 6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens Bioelectron. 25(5):1166–1172.
  • Arsand JB, Jank L, Martins MT, Hoff RB, Barreto F, Pizzolato TM, Sirtori C. 2016. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry. Talanta. 154:38–45.
  • Arvand M, Alirezanejad F. 2011. Sulfamethoxazole‐imprinted polymeric receptor as ionophore for potentiometric transduction. Electroanalysis. 23(8):1948–1957.
  • Baeza A, Urraca J, Chamorro R, Orellana G, Castellari M, Moreno-Bondi M. 2016. Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry. J Chromatogr. 1474:121–129.
  • Bereczki A, Tolokan A, Horvai G, Horvath V, Lanza F, Hall AJ, Sellergren B. 2001. Determination of phenytoin in plasma by molecularly imprinted solid-phase extraction. J Chromatogr. 930(1–2):31–38.
  • Bogialli S, Capitolino V, Curini R, Di Corcia A, Nazzari M, Sergi M. 2004. Simple and rapid liquid chromatography−tandem mass spectrometry confirmatory assay for determining amoxicillin and ampicillin in bovine tissues and milk. J Agric Food Chem. 52(11):3286–3291.
  • Boyd B, Björk H, Billing J, Shimelis O, Axelsson S, Leonora M, Yilmaz E. 2007. Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers. J Chromatogr. 1174(1–2):63–71.
  • Cai W, Gupta RB. 2004. Molecularly-imprinted polymers selective for tetracycline binding. Sep Purif Technol. 35(3):215–221.
  • Camara M, Gallego-Pico A, Garcinuno R, Fernandez-Hernando P, Durand-Alegría J, Sanchez P. 2013. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Food Chem. 141(2):829–834.
  • Caro E, Marce R, Cormack P, Sherrington D, Borrull F. 2005. Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracycline antibiotics. Anal Chim Acta. 552(1–2):81–86.
  • Caro E, Marcé RM, Cormack PA, Sherrington DC, Borrull F. 2006. Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples. Anal Chim Acta. 562(2):145–151.
  • Carter SR, Rimmer S. 2004. Surface molecularly imprinted polymer core–shell particles. Adv Funct Mater. 14(6):553–561.
  • Cederfur J, Pei Y, Zihui M, Kempe M. 2003. Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. J Comb Chem. 5(1):67–72.
  • Chen H, Son S, Zhang F, Yan J, Li Y, Ding H, Ding L. 2015. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J Chromatogr B. 983:32–38.
  • Clark C. 1977. Toxicity of aminoglycoside antibiotics. Mod Vet Pract. 58(7):594–598.
  • Dahlgren JG, Anderson ET, Hewitt WL. 1975. Gentamicin blood levels: a guide to nephrotoxicity. Antimicrob Agents Chemother. 8(1):58–62.
  • De Prada AG-V, Martínez-Ruiz P, Reviejo A, Pingarrón J. 2005. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk. Anal Chim Acta. 539(1–2):125–132.
  • De Zayas-Blanco F, Garcıa-Falcón M, Simal-Gándara J. 2004. Determination of sulfamethazine in milk by solid phase extraction and liquid chromatographic separation with ultraviolet detection. Food Control. 15(5):375–378.
  • Díaz-Bao M, Barreiro R, Miranda JM, Cepeda A, Regal P. 2015. Fast HPLC-MS/MS method for determining penicillin antibiotics in infant formulas using molecularly imprinted solid-phase extraction. J Anal Methods Chem. 2015. doi.org/10.1155/2015/959675
  • Dickert FL, Achatz P, Halikias K. 2001. Double molecular imprinting – a new sensor concept for improving selectivity in the detection of polycyclic aromatic hydrocarbons (PAHs) in water. Fresenius’J Anal Chem. 371(1):11–15.
  • Díez C, Guillarme D, Spörri AS, Cognard E, Ortelli D, Edder P, Rudaz S. 2015. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 882:127–139.
  • Dubois M, Fluchard D, Sior E, Delahaut P. 2001. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B: Biomed Sci Appl. 753(2):189–202.
  • European Commission. 1990. Council regulation (EEC) no 2377/90 of 26 June 1990 laying down a community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Off JL. 224:0001–0008.
  • Gao F, Feng S, Chen Z, Li‐Chan EC, Grant E, Lu X. 2014. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny‐based SERS nano‐biosensor. J Food Sci. 79(12):N2542-N2549.
  • Gao R, Kong X, Su F, He X, Chen L, Zhang Y. 2010a. Synthesis and evaluation of molecularly imprinted core–shell carbon nanotubes for the determination of triclosan in environmental water samples. J Chromatogr. 1217(52):8095–8102.
  • Gao R, Zhang J, He X, Chen L, Zhang Y. 2010b. Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem. 398(1):451–461.
  • García-Mayor M, Gallego-Picó A, Garcinuño R, Fernández-Hernando P, Durand-Alegría J. 2012. Matrix solid-phase dispersion method for the determination of macrolide antibiotics in sheep’s milk. Food Chem. 134(1):553–558.
  • García-Mayor M, Paniagua-González G, Soledad-Rodríguez B, Garcinuño-Martínez R, Fernández-Hernando P, Durand-Alegría J. 2015. Occurrence of erythromycin residues in sheep milk. Validation of an analytical method. Food Chem Toxicol. 78:26–32.
  • Giovannoli C, Anfossi L, Biagioli F, Passini C, Baggiani C. 2013. Solid phase extraction of penicillins from milk by using sacrificial silica beads as a support for a molecular imprint. Microchimica Acta. 180(15–16):1371–1377.
  • Guardia L, Badía-Laíño R, Díaz-García ME, Ania CO, Parra JB. 2008. Role of surface adsorption and porosity features in the molecular recognition ability of imprinted sol–gels. Biosens Bioelectron. 23(7):1101–1108.
  • Guo Z, Gai P. 2011. Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Anal Chim Acta. 688(2):197–202.
  • Gupta VK, Yola ML, Özaltın N, Atar N, Üstündağ Z, Uzun L. 2013. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochimica Acta. 112:37–43.
  • He C, Liu F, Li K, Liu H. 2006. Molecularly imprinted polymer film grafted from porous silica for selective recognition of testosterone. Anal Lett. 39(2):275–286.
  • Herrera-Herrera AV, Hernández-Borges J, Rodríguez-Delgado MÁ. 2009. Fluoroquinolone antibiotic determination in bovine, ovine and caprine milk using solid-phase extraction and high-performance liquid chromatography-fluorescence detection with ionic liquids as mobile phase additives. J Chromatogr. 1216(43):7281–7287.
  • Hormazabal V, Yndestad M. 2001. Simultaneous determination of chloramphenicol and ketoprofen in meat and milk and chloramphenicol in egg, honey, and urine using liquid chromatography-mass spectrometry. J Liq Chromatogr Relat Technol. 24(16):2477–2486.
  • Hou J, Li H, Wang L, Zhang P, Zhou T, Ding H, Ding L. 2016. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta. 146:34–40.
  • Hu X, Pan J, Hu Y, Huo Y, Li G. 2008. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J Chromatogr. 1188(2):97–107.
  • Jing T, Wang Y, Dai Q, Xia H, Niu J, Hao Q, Mei S, Zhou Y. 2010. Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics. Biosens Bioelectron. 25(10):2218–2224.
  • Kantiani L, Farré M, Barceló D. 2011. Rapid residue analysis of fluoroquinolones in raw bovine milk by online solid phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr. 1218(50):9019–9027.
  • Karageorgou EG, Samanidou VF. 2010. Application of ultrasound‐assisted matrix solid‐phase dispersion extraction to the HPLC confirmatory determination of cephalosporin residues in milk. J Sep Sci. 33(17‐18):2862–2871.
  • Karageorgou EG, Samanidou VF, Papadoyannis IN. 2012. Ultrasound‐assisted matrix solid phase dispersive extraction for the simultaneous analysis of β‐lactams (four penicillins and eight cephalosporins) in milk by high performance liquid chromatography with photodiode array detection. J Sep Sci. 35(19):2599–2607.
  • Kehrenberg C, Schwarz S. 2006. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother. 50(4):1156–1163.
  • Korpimäki T, Hagren V, Brockmann E-C, Tuomola M. 2004. Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody. Anal Chem. 76(11):3091–3098.
  • Lata K, Sharma R, Naik L, Rajput Y, Mann B. 2015. Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk. Food Chem. 184:176–182.
  • Li J, Chen H, Chen H, Ye Y. 2012. Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high‐performance liquid chromatography. J Sep Sci. 35(1):137–144.
  • Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J. 2013. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron. 44:70–76.
  • Liu H-Y, Lin S-L, Fuh M-R. 2016. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta. 150:233–239.
  • Liu X, Yu Y, Zhao M, Zhang H, Li Y, Duan G. 2014. Solid phase extraction using magnetic core mesoporous shell microspheres with C18-modified interior pore-walls for residue analysis of cephalosporins in milk by LC–MS/MS. Food Chem. 150:206–212.
  • Liu Z-S, Xu Y-L, Yan C, Gao R-Y. 2004. Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography. Anal Chim Acta. 523(2):243–250.
  • Lu C-H, Zhou W-H, Han B, Yang -H-H, Chen X, Wang X-R. 2007. Surface-imprinted core−shell nanoparticles for sorbent assays. Anal Chem. 79(14):5457–5461.
  • Luo Z, Du W, Zheng P, Guo P, Wu N, Tang W, Zeng A, Chang C, Fu Q. 2015. Molecularly imprinted polymer cartridges coupled to liquid chromatography for simple and selective analysis of penicilloic acid and penilloic acid in milk by matrix solid-phase dispersion. Food Chem Toxicol. 83:164–173.
  • Mamani MCV, Reyes FGR, Rath S. 2009. Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem. 117(3):545–552.
  • Marazuela M, Moreno-Bondi M. 2004. Multiresidue determination of fluoroquinolones in milk by column liquid chromatography with fluorescence and ultraviolet absorbance detection. J Chromatogr. 1034(1–2):25–32.
  • Mayor MG, González GP, Martínez RG, Hernando PF, Alegría JD. 2017. Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk. Food Chem. 221:721–728.
  • Mena M, Agüí L, Martinez-Ruiz P, Yanez-Sedeno P, Reviejo A, Pingarrón J. 2003. Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination. Anal Bioanal Chem. 376(1):18–25.
  • Mohajeri SA, Ebrahimi SA. 2008. Preparation and characterization of a lamotrigine imprinted polymer and its application for drug assay in human serum. J Sep Sci. 31(20):3595–3602.
  • Moreno-González D, Hamed AM, García-Campaña AM, Gámiz-Gracia L. 2017. Evaluation of hydrophilic interaction liquid chromatography–tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta. 171:74–80.
  • Nilsson J, Spégel P, Nilsson S. 2004. Molecularly imprinted polymer formats for capillary electrochromatography. J Chromatogr B. 804(1):3–12.
  • Oliveira JFP, Cipullo JP, Burdmann EA. 2006. Aminoglycoside nephrotoxicity. Braz J Cardiovasc Surg. 21(4):444–452.
  • Quesada-Molina C, Claude B, García-Campaña AM, Del Olmo-Iruela M, Morin P. 2012. Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer. Food Chem. 135(2):775–779.
  • Ramström O, Skudar K, Haines J, Patel P, Brüggemann O. 2001. Food analyses using molecularly imprinted polymers. J Agric Food Chem. 49(5):2105–2114.
  • Rezende D, Filho NF, Rocha G. 2012. Simultaneous determination of chloramphenicol and florfenicol in liquid milk, milk powder and bovine muscle by LC–MS/MS. Food Addit Contaminants: Part A. 29(4):559–570.
  • Rodziewicz L, Zawadzka I. 2008. Rapid determination of chloramphenicol residues in milk powder by liquid chromatography–elektrospray ionization tandem mass spectrometry. Talanta. 75(3):846–850.
  • Samanidou V, Kehagia M, Kabir A, Furton KG. 2016. Matrix molecularly imprinted mesoporous sol–gel sorbent for efficient solid-phase extraction of chloramphenicol from milk. Anal Chim Acta. 914:62–74.
  • Schenck FJ, Callery PS. 1998. Chromatographic methods of analysis of antibiotics in milk. J Chromatogr. 812(1–2):99–109.
  • Shen J, Xia X, Jiang H, Li C, Li J, Li X, Ding S. 2009. Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry. J Chromatogr B. 877(14–15):1523–1529.
  • Shi X, Wu A, Zheng S, Li R, Zhang D. 2007. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B. 850(1–2):24–30.
  • Soledad-Rodriguez B, Fernandez-Hernando P, Garcinuno-Martinez R, Durand-Alegria J. 2017. Effective determination of ampicillin in cow milk using a molecularly imprinted polymer as sorbent for sample preconcentration. Food Chem. 224:432–438.
  • Sørensen LK, Rasmussen BM, Boison JO, Keng L. 1997. Simultaneous determination of six penicillins in cows’ raw milk by a multiresidue high-performance liquid chromatographic method. J Chromatogr B: Biomed Sci Appl. 694(2):383–391.
  • Sørensen LK, Snor LK. 2000. Determination of cephalosporins in raw bovine milk by high-performance liquid chromatography. J Chromatogr. 882(1–2):145–151.
  • Sreenivasan K, Sivakumar R. 1999. Imparting recognition sites in poly (HEMA) for two compounds through molecular imprinting. J Appl Polym Sci. 71(11):1823–1826.
  • Sun X, He J, Cai G, Lin A, Zheng W, Liu X, Chen L, He X, Zhang Y. 2010. Room temperature ionic liquid‐mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples. J Sep Sci. 33(23‐24):3786–3793.
  • Tang Q, Yang T, Tan X, Luo J. 2009. Simultaneous determination of fluoroquinolone antibiotic residues in milk sample by solid-phase extraction−liquid chromatography−tandem mass spectrometry. J Agric Food Chem. 57(11):4535–4539.
  • Tashakori-Sabzevar F, Mohajeri SA. 2015. Development of ocular drug delivery systems using molecularly imprinted soft contact lenses. Drug Dev Ind Pharm. 41(5):703–713.
  • Tsai W-H, Huang T-C, Huang -J-J, Hsue Y-H, Chuang H-Y. 2009. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J Chromatogr. 1216(12):2263–2269.
  • Turco A, Corvaglia S, Mazzotta E. 2015. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: study of imprinting parameters. Biosens Bioelectron. 63:240–247.
  • Turiel E, Martín-Esteban A, Tadeo JL. 2007. Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils. J Chromatogr. 1172(2):97–104.
  • Turton J, Andrews C, Havard A, Williams T. 2002. Studies on the haemotoxicity of chloramphenicol succinate in the Dunkin Hartley guinea pig. Int J Exp Pathol. 83(5):225–238.
  • Uludağ Y, Piletsky SA, Turner AP, Cooper MA. 2007. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. FEBS J. 274(21):5471–5480.
  • Urraca JL, Moreno-Bondi MC, Hall AJ, Sellergren B. 2007. Direct extraction of penicillin G and derivatives from aqueous samples using a stoichiometrically imprinted polymer. Anal Chem. 79(2):695–701.
  • Valero-Navarro A, Medina-Castillo AL, Fernandez-Sanchez JF, Fernández-Gutiérrez A. 2011. Synthesis of a novel polyurethane-based-magnetic imprinted polymer for the selective optical detection of 1-naphthylamine in drinking water. Biosens Bioelectron. 26(11):4520–4525.
  • Van Royen G, Dubruel P, Daeseleire E. 2014. Development and evaluation of a molecularly imprinted polymer for the detection and clean-up of benzylpenicillin in milk. J Agric Food Chem. 62(35):8814–8821.
  • Wang J, Leung D, Butterworth F. 2005. Determination of five macrolide antibiotic residues in eggs using liquid chromatography/electrospray ionization tandem mass spectrometry. J Agric Food Chem. 53(6):1857–1865.
  • Wang Q, Lv Z, Tang Q, Gong CB, Lam MHW, Ma XB, Chow CF. 2016a. Photoresponsive molecularly imprinted hydrogel casting membrane for the determination of trace tetracycline in milk. J Mol Recognition. 29(3):123–130.
  • Wang X, Li K, Shi D, Xiong N, Jin X, Yi J, Bi D. 2007. Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles. J Agric Food Chem. 55(6):2072–2078.
  • Wang Y, Li S, Zhang F, Lu Y, Yang B, Zhang F, Liang X. 2016b. Study of matrix effects for liquid chromatography–electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk. J Chromatogr. 1437:8–14.
  • Wen Y, Zhang M, Zhao Q, Feng Y-Q. 2005. Monitoring of five sulfonamide antibacterial residues in milk by in-tube solid-phase microextraction coupled to high-performance liquid chromatography. J Agric Food Chem. 53(22):8468–8473.
  • Wu J-E, Chang C, Ding W-P, He D-P. 2008. Determination of florfenicol amine residues in animal edible tissues by an indirect competitive ELISA. J Agric Food Chem. 56(18):8261–8267.
  • Wu N, Luo Z, Ge Y, Guo P, Du K, Tang W, Du W, Zeng A, Chang C, Fu Q. 2016. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal. 6(3):157–164.
  • Wu X, Wu L. 2015. Molecularly imprinted polymers for the solid‐phase extraction of four fluoroquilones from milk and lake water samples. J Sep Sci. 38(20):3615–3621.
  • Yahaya N, Sanagi MM, Mitome T, Nishiyama N, Ibrahim WAW, Nur H. 2015. Dispersive micro-solid phase extraction combined with high-performance liquid chromatography for the determination of three penicillins in milk samples. Food Anal Meth. 8(5):1079–1087.
  • Yan H, Qiao F, Row KH. 2009. Molecularly imprinted monolithic column for selective on-line extraction of enrofloxacin and ciprofloxacin from urine. Chromatographia. 70(7–8):1087.
  • Yan H, Row KH. 2008. Novel molecularly imprinted monolithic column for selective on‐line extraction of ciprofloxacin from human urine. Biomed Chromatogr. 22(5):487–493.
  • Yan H, Tian M, Row KH. 2008. Determination of enrofloxacin and ciprofloxacin in milk using molecularly imprinted solid‐phase extraction. J Sep Sci. 31(16‐17):3015–3020.
  • Yang X-Q, Yang C-X, Yan X-P. 2013. Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. J Chromatogr. 1304:28–33.
  • Zhang J, Ni Y, Wang L, Ma J, Zhang Z. 2015. Selective solid‐phase extraction of artificial chemicals from milk samples using multiple‐template surface molecularly imprinted polymers. Biomed Chromatogr. 29(8):1267–1273.
  • Zhang J, Wang H, Liu W, Bai L, Ma N, Lu J. 2008a. Synthesis of molecularly imprinted polymer for sensitive penicillin determination in milk. Anal Lett. 41(18):3411–3419.
  • Zhang N-W, Ming-Xing D, Guo-Yan L, Wei-Wei S, Chun-Yan C. 2008b. Molecularly imprinted membrane-based sensor for the detection of chloramphenicol succinate residue in milk. Chin J Anal Chem. 36(10):1380–1384.
  • Zhao T, Guan X, Tang W, Ma Y, Zhang H. 2015. Preparation of temperature sensitive molecularly imprinted polymer for solid-phase microextraction coatings on stainless steel fiber to measure ofloxacin. Anal Chim Acta. 853:668–675.
  • Zheng -M-M, Gong R, Zhao X, Feng Y-Q. 2010. Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples. J Chromatogr. 1217(14):2075–2081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.