3,351
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments

ORCID Icon, , ORCID Icon, , &
Pages 665-680 | Received 12 Nov 2019, Accepted 01 Jan 2020, Published online: 12 Feb 2020

References

  • Ali FB, Kang DJ, Kim MP, Cho CH, Kim BJ. 2014. Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polym Int. 63(9):1620–1626.
  • Amass W, Amass A, Tighe B. 1998. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int. 47(2):89–144.
  • Aminabhavi T, Balundgi R, Cassidy P. 1990. A review on biodegradable plastics. Polym-Plast Technol Eng. 29(3):235–262.
  • Arrieta MP, López J, Hernández A, Rayón E. 2014a. Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Eur Polym J. 50:255–270.
  • Arrieta MP, MdM C-L, Rayón E, Barral-Losada LF, López-Vilariño JM, López J, González-Rodríguez MV. 2014b. Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB) blends incorporated with catechin intended for active food-packaging applications. J Agric Food Chem. 62(41):10170–10180.
  • Arrieta MP, Peponi L, López D, López J, Kenny JM. 2017. Food packaging. Elsevier: Academic Press; p. 391–424.
  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett.
  • Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jiménez A, Kenny JM. 2017. Functional properties of plasticized bio-based poly (lactic acid) _poly (hydroxybutyrate)(PLA_PHB) films for active food packaging. Food Bioprocess Technol. 10(4):770–780.
  • Christophliemk H, Johansson C, Ullsten H, Järnström L. 2017. Oxygen and water vapor transmission rates of starch-poly (vinyl alcohol) barrier coatings for flexible packaging paper. Prog Org Coat. 113:218–224.
  • de Andrade CS, Fonseca GG, Innocentini Mei LH, Fakhouri FM. 2017. Development and characterization of multilayer films based on polyhydroxyalkanoates and hydrocolloids. J Appl Polym Sci. 134:6.
  • Díez-Pascual A, Díez-Vicente A. 2014. Poly (3-hydroxybutyrate)/ZNO bionanocomposites with improved mechanical, barrier and antibacterial properties. Int J Mol Sci. 15(6):10950–10973.
  • El Achaby M, El Miri N, Aboulkas A, Zahouily M, Bilal E, Barakat A, Solhy A. 2017. Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol. 96:340–352.
  • Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM. 2016a. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of pha electrospun coatings of interest in food packaging. Food Hydrocoll. 61:261–268.
  • Fabra MJ, López-Rubio A, Lagaron JM. 2014. On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll. 39:77–84.
  • Fabra MJ, Pardo P, Martínez‐Sanz M, Lopez‐Rubio A, Lagarón JM. 2016b. Combining polyhydroxyalkanoates with nanokeratin to develop novel biopackaging structures. J Appl Polym Sci. 133:2.
  • Fortunati E, Armentano I, Iannoni A, Kenny J. 2010. Development and thermal behaviour of ternary pla matrix composites. Polym Degrad Stab. 95(11):2200–2206.
  • Gall SC, Thompson RC. 2015. The impact of debris on marine life. Mar Poll Bull. 92(1–2):170–179.
  • Ghanbarzadeh B, Almasi H, Entezami AA. 2011. Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crops Prod. 33(1):229–235.
  • Guarás MP, Alvarez VA, Ludueña LN. 2015. Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications. J Polym Res. 22(9):165.
  • Heydari A, Alemzadeh I, Vossoughi M. 2013. Functional properties of biodegradable corn starch nanocomposites for food packaging applications. Mater Des. 50:954–961.
  • Huang JC, Shetty AS, Wang MS. 1990. Biodegradable plastics: A review. Adv Polym Technol. 10(1):23–30.
  • Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR. 2012. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym. 90(4):1757–1763.
  • Iizuka S, Murata K, Sekine M, Sato C. 2016. Development of a simple cup method for water vapor transmission rate measurements under high-temperature conditions. 2016 International Conference on Electronics Packaging (ICEP). IEEE. p. 522–525.
  • Iwata T. 2015. Biodegradable and bio‐based polymers: future prospects of eco‐friendly plastics. Angew Chem Int Ed. 54(11):3210–3215.
  • Joseph CS, Prashanth KH, Rastogi N, Indiramma A, Reddy SY, Raghavarao K. 2011. Optimum blend of chitosan and poly-(ε-caprolactone) for fabrication of films for food packaging applications. Food Bioprocess Technol. 4(7):1179–1185.
  • Jost V, Kopitzky R. 2015. Blending of polyhydroxybutyrate-co-valerate with polylactic acid for packaging applications–reflections on miscibility and effects on the mechanical and barrier properties. Chem Biochem Eng Q. 29(2):221–246.
  • Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. 2017. Lifetime prediction of biodegradable polymers. Prog Polym Sci. 71:144–189.
  • Lee DS. 2016. Carbon dioxide absorbers for food packaging applications. Trends Food Sci Technol. 57:146–155.
  • Lin X, Fan X, Li R, Li Z, Ren T, Ren X, Huang TS. 2018. Preparation and characterization of PHB/PBAT–based biodegradable antibacterial hydrophobic nanofibrous membranes. Polym Adv Technol. 29(1):481–489.
  • Lins L, Bugatti V, Livi S, Gorrasi G. 2018. Ionic liquid as surfactant agent of hydrotalcite: influence on the final properties of polycaprolactone matrix. Polymers. 10(1):44.
  • Liu Z, Lei Y, Hu Z, Kong W, Zhou C, Lei J. 2017. Preparation, characterization and properties of poly (lactic acid)/poly (1, 4-butylene adipate) blends for biodegradable packaging materials. Macromol Res. 25(5):439–445.
  • Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny J, Chiralt A, Torre L. 2016. Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod. 93:276–289.
  • Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, Famá L. 2017. Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr Polym. 176:187–194.
  • Mistriotis A, Briassoulis D, Giannoulis A, D’Aquino S. 2016. Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biol Technol. 111:380–389.
  • Moran JI, Ludueña LN, Phuong VT, Cinelli P, Lazzeri A, Alvarez VA. 2016. Processing routes for the preparation of poly (lactic acid)/cellulose-nanowhisker nanocomposites for packaging applications. Polym Polym Compos. 24(5):341–346.
  • Mostafa N, Farag AA, Abo-dief HM, Tayeb AM. 2018. Production of biodegradable plastic from agricultural wastes. Arabian J Chem. 11(4):546–553.
  • O’Brine T, Thompson RC. 2010. Degradation of plastic carrier bags in the marine environment. Mar Poll Bull. 60(12):2279–2283.
  • Reis MO, Olivato JB, Bilck AP, Zanela J, Grossmann MVE, Yamashita F. 2018. Biodegradable trays of thermoplastic starch/poly (lactic acid) coated with beeswax. Ind Crops Prod. 112:481–487.
  • Rhim J-W, Park H-M, Ha C-S. 2013. Bio-nanocomposites for food packaging applications. Prog Polym Sci. 38(10–11):1629–1652.
  • Rujnić-Sokele M, Pilipović A. 2017. Challenges and opportunities of biodegradable plastics: a mini review. Waste Manage Res. 35(2):132–140.
  • Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J. 2015. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (arenga pinnata) starch. Polymers. 7(6):1106–1124.
  • Seggiani M, Cinelli P, Mallegni N, Balestri E, Puccini M, Vitolo S, Lardicci C, Lazzeri A. 2017. New bio-composites based on polyhydroxyalkanoates and posidonia oceanica fibres for applications in a marine environment. Materials. 10(4):326.
  • Shah AA, Hasan F, Hameed A, Ahmed S. 2008. Biological degradation of plastics: a comprehensive review. Biotechnol Adv. 26(3):246–265.
  • Shah P, Prajapati R, Singh P. 2017. Enrichment of mechanical properties of biodegradable composites containing waste cellulose fiber and thermoplastic starch. Eur J Adv Eng Technol. 4(4):282–286.
  • Silva-Pereira MC, Teixeira JA, Pereira-Júnior VA, Stefani R. 2015. Chitosan/corn starch blend films with extract from brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT-Food Sci Technol. 61(1):258–262.
  • Singla R, Mehta R. 2012. Preparation and characterization of polylactic acid-based biodegradable blends processed under microwave radiation. Polym-Plast Technol Eng. 51(10):1014–1017.
  • Siracusa V, Rocculi P, Romani S, Dalla Rosa M. 2008. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 19(12):634–643.
  • Sivan A. 2011. New perspectives in plastic biodegradation. Curr Opin Biotechnol. 22(3):422–426.
  • Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, Shim WJ. 2015. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Poll Bull. 93(1–2):202–209.
  • Song Z, Xiao H, Zhao Y. 2014. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym. 111:442–448.
  • Suthapakti K, Molloy R, Punyodom W, Nalampang K, Leejarkpai T, Topham PD, Tighe BJ. 2018. Biodegradable compatibilized poly (l-lactide)/thermoplastic polyurethane blends: design, preparation and property testing. J Polym Environ. 26(5):1818–1830.
  • Tabone MD, Cregg JJ, Beckman EJ, Landis AE. 2010. Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol. 44(21):8264–8269.
  • Venkatesan R, Rajeswari N, Tamilselvi A. 2018. Antimicrobial, mechanical, barrier, and thermal properties of bio‐based poly (butylene adipate‐co‐terephthalate) (PBAT)/Ag2O nanocomposite films for packaging application. Polym Adv Technol. 29(1):61–68.
  • Zafar U, Houlden A, Robson GD. 2013. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol. 79(23):7313–7324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.