517
Views
15
CrossRef citations to date
0
Altmetric
Articles

Towards green analysis of curcumin from tea, honey and spices: Extraction by deep eutectic solvent assisted emulsification liquid-liquid microextraction method based on response surface design

ORCID Icon, ORCID Icon & ORCID Icon
Pages 869-881 | Received 19 Dec 2019, Accepted 05 Mar 2020, Published online: 16 Apr 2020

References

  • Abdulra’uf LB, Tan GH. 2015. Chemometric approach to the optimization of HS-SPME/GC–MS for the determination of multiclass pesticide residues in fruits and vegetables. Food Chemistry. 177:267–273. doi:10.1016/j.foodchem.2015.01.031.
  • Afkhami A, Pirdadeh-Beiranvand M, Madrakian T. 2017. A method based on ultrasound-assisted solidification of floating drop micro-extraction technique for the spectrophotometric determination of curcumin in turmeric powder. Analytical and Bioanalytical Chemistry Research. 4(1):1–10.
  • Ahmadi R, Hemmateenejad B, Safavi A, Shojaeifard Z, Mohabbati M, Firuzi O. 2018. Assessment of cytotoxicity of choline chloride-based natural deep eutectic solvents against human HEK-293 cells: A QSAR analysis. Chemosphere. 209:831–838. doi:10.1016/j.chemosphere.2018.06.103.
  • Altunay N. 2018. Development of vortex-assisted ionic liquid-dispersive micro-extraction methodology for vanillin monitoring in food products using ultraviolet-visible spectrophotometry. LWT. 93:9–15. doi:10.1016/j.lwt.2018.03.021.
  • Altunay N, Elik A, Gürkan R. 2019a. Natural deep eutectic solvent-based ultrasound-assisted-micro-extraction for extraction, pre-concentration and analysis of methylmercury and total mercury in fish and environmental waters by spectrophotometry. Food Additives & Contaminants:  Part A. 36(7):1079–1097.
  • Altunay N, Elik A, Gürkan R. 2019b. A novel, green and safe ultrasound-assisted emulsification liquid phase micro-extraction based on alcohol-based deep eutectic solvent for determination of patulin in fruit juices by spectrophotometry. Journal of Food Composition and Analysis. 82:103256.
  • Altunay N, Gürkan R, Olgaç E. 2017. Development of a new methodology for indirect determination of nitrite, nitrate, and total nitrite in the selected two groups of foods by spectrophotometry. Food Analytical Methods. 10(7):2194–2206. doi:10.1007/s12161-016-0789-7.
  • Altunay N, Ülüzger D, Gürkan R. 2018. Simple and fast spectrophotometric determination of low levels of thiabendazole residues in fruit and vegetables after pre-concentration with ionic liquid phase micro-extraction. Food Additives & Contaminants: Part A. 35(6):1139–1154. doi:10.1080/19440049.2018.1444284.
  • Arslan E, Çakır S. 2014. A novel palladium nanoparticles-polyproline-modified graphite electrode and its application for determination of curcumin. Journal of Solid State Electrochemistry. 18(6):1611–1620. doi:10.1007/s10008-014-2382-6.
  • Asfaram A, Ghaedi M, Alipanahpour E, Agarwal S, Gupta VK. 2016. Application of response surface methodology and dispersive liquid–liquid micro-extraction by microvolume spectrophotometry method for rapid determination of curcumin in water, wastewater, and food samples. Food Analytical Methods. 9(5):1274–1283. doi:10.1007/s12161-015-0305-5.
  • Aydin F, Yilmaz E, Soylak M. 2018. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid micro-extraction of trace curcumin in food and herbal tea samples. Food Chemistry. 243:442–447. doi:10.1016/j.foodchem.2017.09.154.
  • Becerra-Herrera M, Miranda V, Arismendi D, Richter P. 2018. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta. 176:551–557. doi:10.1016/j.talanta.2017.08.071.
  • Cheraghi S, Taher MA, Karimi‐Maleh H. 2016. Fabrication of fast and sensitive nanostructure voltammetric sensor for determination of curcumin in the presence of vitamin B9 in food samples. Electroanalysis. 28(10):2590–2597. doi:10.1002/elan.201600252.
  • Cunha SC, Fernandes JO. 2018. Extraction techniques with deep eutectic solvents. TrAC Trends in Analytical Chemistry. 105:225–239. doi:10.1016/j.trac.2018.05.001.
  • Dağdeviren S, Altunay N, Sayman Y, Gürkan R. 2018. A new method of UA_CPE coupled with spectrophotometry for the faster and cost-effective detection of proline in fruit juice, honey, and wine. Food Chemistry. 255:31–40. doi:10.1016/j.foodchem.2018.02.046.
  • Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica chimica acta. 766:61–68. doi:10.1016/j.aca.2012.12.019.
  • Duan L, Dou LL, Guo L, Li P, Liu EH. 2016. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustainable Chemistry & Engineering. 4(4):2405–2411. doi:10.1021/acssuschemeng.6b00091.
  • Elik A, Altunay N, Gürkan R. 2019. Ultrasound-assisted low-density solvent-based dispersive liquid–liquid micro-extraction coupled to spectrophotometry for the determination of low levels of histamine in fish and meat products. Food Analytical Methods. 12(2):489–502. doi:10.1007/s12161-018-1380-1.
  • Faraji M. 2019. Novel hydrophobic deep eutectic solvent for vortex assisted dispersive liquid-liquid micro-extraction of two auxins in water and fruit juice samples and determination by high performance liquid chromatography. Microchemical Journal. 150:104130. doi:10.1016/j.microc.2019.104130.
  • Ghanemi K, Navidi MA, Fallah-Mehrjardi M, Dadolahi-Sohrab A. 2014. Ultra-fast microwave-assisted digestion in choline chloride–oxalic acid deep eutectic solvent for determining Cu, Fe, Ni and Zn in marine biological samples. Analytical Methods. 6(6):1774–1781. doi:10.1039/C3AY41843J.
  • Gupta NK, Nahata A, Dixit VK. 2010. Development of a spectrofluorimetric method for the determination of curcumin. Asian J Trad Med. 5(1):12–18.
  • Hashemi P, Naderlou M, Safdarian M, Ghiasvand AR. 2013. A simple device for collection of extraction phase in dispersive liquid-liquid micro-extraction method based on solidification of floating organic droplet for sensitive determination of curcumin in human serum. Analytical Chemistry Letters. 3(2):92–101. doi:10.1080/22297928.2013.770675.
  • Kanberoglu GS, Yilmaz E, Soylak M. 2019. Developing a new and simple ultrasound-assisted emulsification liquid phase micro-extraction method built upon deep eutectic solvents for Patent Blue V in syrup and water samples. Microchemical Journal. 145:813–818. doi:10.1016/j.microc.2018.11.053.
  • Kang YY, Choi I, Chong Y, Yeo WS, Mok H. 2016. Complementary analysis of curcumin biodistribution using optical fluorescence imaging and mass spectrometry. Applied Biological Chemistry. 59(2):291–295. doi:10.1007/s13765-016-0154-y.
  • Kim DW, Yousaf AM, Li DX, Kim JO, Yong CS, Cho KH, Choi HG. 2017. Development of RP-HPLC method for simultaneous determination of docetaxel and curcumin in rat plasma: validation and stability. Asian Journal of Pharmaceutical Sciences. 12(1):105–113. doi:10.1016/j.ajps.2016.08.002.
  • Lee BH, Choi HA, Kim MR, Hong J. 2013. Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Science and Biotechnology. 22(1):279–282. doi:10.1007/s10068-013-0038-4.
  • Lee JH, Choung MG. 2011. Determination of curcuminoid colouring principles in commercial foods by HPLC. Food Chemistry. 124(3):1217–1222. doi:10.1016/j.foodchem.2010.07.049.
  • Li J, Jiang Y, Wen J, Fan G, Wu Y, Zhang C. 2009. A rapid and simple HPLC method for the determination of curcumin in rat plasma: assay development, validation and application to a pharmacokinetic study of curcumin liposome. Biomedical Chromatography. 23(11):1201–1207. doi:10.1002/bmc.1244.
  • Liu X, Zhu L, Gao X, Wang Y, Lu H, Tang Y, Li J. 2016. Magnetic molecularly imprinted polymers for spectrophotometric quantification of curcumin in food. Food Chemistry. 202:309–315. doi:10.1016/j.foodchem.2016.02.015.
  • Ma W, Wang J, Guo Q, Tu P. 2015. Simultaneous determination of doxorubicin and curcumin in rat plasma by LC–MS/MS and its application to pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis. 111:215–221. doi:10.1016/j.jpba.2015.04.007.
  • Menghwar P, Yilmaz E, Soylak M. 2018. Development of an ultrasonic-assisted restricted access supramolecular solvent-based liquid phase micro-extraction (UA-RAS-LPME) method for separation-preconcentration and UV-VIS spectrophotometric detection of curcumin. Separation Science and Technology. 53(16):2612–2621. doi:10.1080/01496395.2018.1462389.
  • Mondal S, Ghosh S, Moulik SP. 2016. Stability of curcumin in different solvent and solution media: UV–visible and steady-state fluorescence spectral study. Journal of Photochemistry and Photobiology B. Biology. 158:212–218. doi:10.1016/j.jphotobiol.2016.03.004.
  • Persson BA, Vessman J. 2001. The use of selectivity in analytical chemistry–Some considerations. TrAC Trends in Analytical Chemistry. 20(10):526–532. doi:10.1016/S0165-9936(01)00093-0.
  • Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. 2016. Curcumin and health. Molecules. 21(3):264. doi:10.3390/molecules21030264.
  • Rahimi M, Hashemi P, Nazari F. 2014. Cold column trapping-cloud point extraction coupled to high performance liquid chromatography for preconcentration and determination of curcumin in human urine. Analytica chimica acta. 826:35–42. doi:10.1016/j.aca.2014.04.012.
  • Singh S, Wahajuddin JG, Jain G. 2010. Determination of curcumin in rat plasma by liquid–liquid extraction using LC–MS/MS with electrospray ionization: assay development, validation and application to a pharmacokinetic study. J. Bioanal. Biomed. 2(4):79–84.
  • Subhan MA, Alam K, Rahaman MS, Rahman MA, Awal R. 2014. Synthesis and characterization of metal complexes containing curcumin (C 21 H 20 O 6) and study of their anti-microbial activities and DNA-binding properties. Journal of Scientific Research. 6(1):97–109. doi:10.3329/jsr.v6i1.15381.
  • Unsal YE, Tuzen M, Soylak M. 2019. Ultrasound-assisted ionic liquid-dispersive liquid–liquid of curcumin in food samples micro-extraction and its spectrophotometric determination. Journal of AOAC International. 102(1):217–221. doi:10.5740/jaoacint.18-0095.
  • Van Nong H, Hung LX, Thang PN, Chinh VD, Dung PT, Van Trung T, Nga PT. 2016. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus. 5(1):1–9. doi:10.1186/s40064-016-2812-2.
  • Wei Z, Qi X, Li T, Luo M, Wang W, Zu Y, Fu Y. 2015. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Separation and Purification Technology. 149:237–244. doi:10.1016/j.seppur.2015.05.015.
  • Yu H, Huang Q. 2010. Enhanced in vitro anti-cancer activity of curcumin encapsulated in hydrophobically modified starch. Food Chemistry. 119(2):669–674. doi:10.1016/j.foodchem.2009.07.018.
  • Zhu S, Zhou J, Jia H, Zhang H. 2018. Liquid–liquid micro-extraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chemistry. 243:351–356. doi:10.1016/j.foodchem.2017.09.141.
  • Zokhtareh R, Rahimnejad M. 2018. A novel sensitive electrochemical sensor based on nickel chloride solution modified glassy carbon electrode for curcumin determination. Electroanalysis. 30(5):921– 927. doi:10.1002/elan.201700770.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.