290
Views
5
CrossRef citations to date
0
Altmetric
Articles

Dispersive liquid–liquid microextraction based on the solidification of floating organic droplets for HPLC determination of three strobilurin fungicides in cereals

, , , , & ORCID Icon
Pages 1279-1288 | Received 15 Feb 2020, Accepted 11 Apr 2020, Published online: 21 May 2020

References

  • Arpa Ç, Arıdaşır I. 2019. Ultrasound assisted ion pair based surfactant-enhanced liquid–liquid microextraction with solidification of floating organic drop combined with flame atomic absorption spectrometry for preconcentration and determination of nickel and cobalt ions in vegetable and herb samples. Food Chem. 284:16–22. doi:10.1016/j.foodchem.2019.01.092.
  • El-Deen AK, Shimizu K. 2019. Deep eutectic solvent as a novel disperser in dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFOD) for preconcentration of steroids in water samples: assessment of the method deleterious impact on the environment using analytical eco-scale and green analytical procedure index. Microchem J. 149:103988.
  • España Amórtegui JC, Guerrero Dallos JA. 2018. Chapter 8 - overview of analytical methodologies and techniques for pesticide residue analysis. In: Britt M, and Andrew C, editors. Integrated analytical approaches for pesticide management. Salt Lake City, Utah: Academic Press; p. 123–132.
  • Esteki M, Shahsavari Z, Simal-Gandara J. 2019. Food identification by high performance liquid chromatography fingerprinting and mathematical processing. Food Res Int. 122:303–317. doi:10.1016/j.foodres.2019.04.025.
  • Farsimadan S, Goudarzi N, Chamjangali MA, Bagherian G. 2016. Optimization of ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of floating organic droplets by experimental design methodologies for determination of three anti-anxiety drugs in human serum and urine samples by high performance liquid chromatography. Microchem J. 128:47–54.
  • Feksa HR, Do Couto HTZ, Garozi R, De Almeida JL, Gardiano CG, Tessmann DJ. 2019. Pre- and postinfection application of strobilurin-triazole premixes and single fungicides for control of fusarium head blight and deoxynivalenol mycotoxin in wheat. Crop Prot. 117:128–134. doi:10.1016/j.cropro.2018.12.003.
  • Ferrone V, Genovese S, Carlucci M, Tiecco M, Germani R, Preziuso F, Epifano F, Carlucci G, Taddeo VA. 2018. A green deep eutectic solvent dispersive liquid-liquid micro-extraction (DES-DLLME) for the UHPLC-PDA determination of oxyprenylated phenylpropanoids in olive, soy, peanuts, corn, and sunflower oil. Food Chem. 245:578–585. doi:10.1016/j.foodchem.2017.10.135.
  • Galuch MB, Magon TFS, Silveira R, Nicácio AE, Pizzo JS, Bonafe EG, Maldaner L, Santos OO, Visentainer JV. 2019. Determination of acrylamide in brewed coffee by dispersive liquid–liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem. 282:120–126. doi:10.1016/j.foodchem.2018.12.114.
  • Guiñez M, Martinez LD, Fernandez L, Cerutti S. 2017. Dispersive liquid–liquid microextraction based on solidification of floating organic drop and fluorescence detection for the determination of nitrated polycyclic aromatic hydrocarbons in aqueous samples. Microchem J. 131:1–8. doi:10.1016/j.microc.2016.10.020.
  • Hu H, Guo Y, Hao Q, Sun X, Jin Y, Zhong Z, Zhang X. 2016. Determination of polychlorinated biphenyls in water by gas chromatography-electron capture detector combined with automated liquid-liquid extraction and dispersive solid phase extraction clean-up. J Zhejiang Univ. 42:99–106.
  • Jing X, Yang L, Zhao W, Wang F, Chen Z, Ma L, Jia L, Wang X. 2019. Evaporation-assisted dispersive liquid–liquid microextraction based on the solidification of floating organic droplets for the determination of triazole fungicides in water samples by high-performance liquid chromatography. J Chromatogr A. 1597:46–53. doi:10.1016/j.chroma.2019.03.040.
  • Lammoglia S, Brun F, Quemar T, Moeys J, Barriuso E, Gabrielle B, Mamy L. 2018. Modelling pesticides leaching in cropping systems: effect of uncertainties in climate, agricultural practices, soil and pesticide properties. Environ Modell Softw. 109:342–352. doi:10.1016/j.envsoft.2018.08.007.
  • Li J, Jia S, Yoon SJ, Lee SJ, Kwon SW, Lee J. 2016. Ion-pair dispersive liquid–liquid microextraction solidification of floating organic droplets method for the rapid and sensitive detection of phenolic acids in wine samples using liquid chromatography combined with a core–shell particle column. J Food Compos Anal. 45:73–79. doi:10.1016/j.jfca.2015.09.016.
  • Li Y, Peng G, He Q, Zhu H, Al-Hamadani SMZF. 2015. Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters. Spectrochim Acta A. 140:156–161. doi:10.1016/j.saa.2014.12.091.
  • Liang P, Liu G, Wang F, Wang W. 2013. Ultrasound-assisted surfactant-enhanced emulsification microextraction with solidification of floating organic droplet followed by high performance liquid chromatography for the determination of strobilurin fungicides in fruit juice samples. J Chromatogr B. 926:62–67. doi:10.1016/j.jchromb.2013.02.011.
  • Liu YJ, Xu W, Zhang H, Xu W. 2019. Hydrophobic deep eutectic solvent-based dispersive liquid-liquid microextraction for the simultaneous enantiomeric analysis of five beta-agonists in the environmental samples. Electrophoresis. 40:2828–2836. doi:10.1002/elps.201900149.
  • Mandrah K, Satyanarayana GNV, Roy SK. 2017. A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography–tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages. J Chromatogr A. 1528:10–17. doi:10.1016/j.chroma.2017.10.071.
  • Mansour FR, Danielson ND. 2017. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta. 170:22–35. doi:10.1016/j.talanta.2017.03.084.
  • Naeemullah TM. 2019. A new portable switchable hydrophilicity microextraction method for determination of vanadium in microsampling micropipette tip syringe system couple with ETAAS. Talanta. 194:991–996. doi:10.1016/j.talanta.2018.10.052.
  • Pan X, Dong F, Wu X, Xu J, Liu X, Zheng Y. 2019. Progress of the discovery, application, and control technologies of chemical pesticides in China. J Integr Agr. 18:840–853. doi:10.1016/S2095-3119(18)61929-X.
  • Papageorgiou M, Skendi A. 2018. 1 - Introduction to cereal processing and by-products. In: Sustainable recovery and reutilization of cereal processing by-products. Cambridge, UK: Woodhead Publishing; p. 1–25.
  • Pastor-Belda M, Garrido I, Campillo N, Viñas P, Hellín P, Flores P, Fenoll J. 2017. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry. Food Chem. 233:69–76. doi:10.1016/j.foodchem.2017.04.094.
  • Patzold M, Siebenhaller S, Kara S, Liese A, Syldatk C, Holtmann D. 2019. Deep eutectic solvents as efficient solvents in biocatalysis. Trends Biotechnol. 37:943–959. doi:10.1016/j.tibtech.2019.03.007.
  • Pérez-Outeiral J, Millán E, Garcia-Arrona R. 2016. Determination of phthalates in food simulants and liquid samples using ultrasound-assisted dispersive liquid–liquid microextraction followed by solidification of floating organic drop. Food Control. 62:171–177. doi:10.1016/j.foodcont.2015.10.016.
  • Pochivalov A, Davletbaeva P, Cherkashina K, Lezov A, Vakh C, Bulatov A. 2018. Surfactant-mediated microextraction approach using switchable Chock for hydrophilicity solvent: HPLC-UV determination of Sudan dyes in solid food samples. J Mol Liq. 271:807–814. doi:10.1016/j.molliq.2018.09.072.
  • Price RK, Welch RW. 2013. Encyclopedia of human nutrition. In: Benjamin C, editor. Cereal grains. 3rd ed. Salt Lake City, Utah: Academic Press; p. 307–316.
  • Rykowska I, Ziemblińska J, Nowak I. 2018. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. J Mol Liq. 259:319–339. doi:10.1016/j.molliq.2018.03.043.
  • Sanagi MM, Abbas HH, Ibrahim WAW, Aboul-Enien HY. 2012. Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chem. 133:557–562. doi:10.1016/j.foodchem.2012.01.036.
  • Shahvandi SK, Banitaba MH, Ahmar H. 2018. Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: application for GC-MS determination of methamphetamine. Talanta. 184:103–108. doi:10.1016/j.talanta.2018.02.115.
  • Sun F, Dai Y, Yu X. 2017. Air pollution, food production and food security: A review from the perspective of food system. J Integr Agr. 16:2945–2962. doi:10.1016/S2095-3119(17)61814-8.
  • Szarka A, Turková D, Hrouzková S. 2018. Dispersive liquid-liquid microextraction followed by gas chromatography–mass spectrometry for the determination of pesticide residues in nutraceutical drops. J Chromatogr A. 1570:126–134. doi:10.1016/j.chroma.2018.07.072.
  • Tekin Z, Erarpat S, Şahin A, Selali Chormey D, Bakırdere S. 2019. Determination of Vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry. Food Chem. 286:500–505. doi:10.1016/j.foodchem.2019.02.036.
  • Wang J, Du Y, Du C, Xu A, Yao G, Zhao H, Zhu X, Guo X. 2019a. Physicochemical properties of switchable-hydrophilicity solvent systems: N,N-Dimethylcyclohexylamine, water and carbon dioxide. J Chem Thermodyn. 133:1–9. doi:10.1016/j.jct.2019.01.030.
  • Wang K, Xie X, Zhang Y, Huang Y, Zhou S, Zhang W, Lin Y, Fan H. 2018. Combination of microwave-assisted extraction and ultrasonic-assisted dispersive liquid-liquid microextraction for separation and enrichment of pyrethroids residues in Litchi fruit prior to HPLC determination. Food Chem. 240:1233–1242. doi:10.1016/j.foodchem.2017.08.061.
  • Wang Q, Chen R, Shatner W, Cao Y, Bai Y. 2019b. State-of-the-art on the technique of dispersive liquid-liquid microextraction. Ultrason Sonochem. 51:369–377. doi:10.1016/j.ultsonch.2018.08.010.
  • Werner J. 2020. Novel deep eutectic solvent-based ultrasounds-assisted dispersive liquid-liquid microextraction with solidification of the aqueous phase for HPLC-UV determination of aromatic amines in environmental samples. Microchem J. 153:7. doi:10.1016/j.microc.2019.104405.
  • Xu H, Ding Z, Lv L, Song D, Feng Y. 2009. A novel dispersive liquid–liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Anal Chim Acta. 636:28–33. doi:10.1016/j.aca.2009.01.028.
  • Xue J, Li H, Liu F, Jiang W, Chen X. 2014. Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid−liquid microextraction coupled with gas chromatography. J Sep Sci. 37:845–852. doi:10.1002/jssc.201301223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.