245
Views
4
CrossRef citations to date
0
Altmetric
Articles

Multivariate image analysis for the rapid detection of residues from packaging remnants in former foodstuff products (FFPs) – a feasibility study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1399-1411 | Received 11 Dec 2019, Accepted 05 May 2020, Published online: 09 Jun 2020

References

  • Amato G, Desiato R, Giovannini T, Pinotti L, Tretola M, Gili M, Marchis D. 2017. Gravimetric quantitative determination of packaging residues in feed from former food. Food Addit Contam Part A. 34(8):1446–1450. doi:10.1080/19440049.2017.1337277.
  • Amigo JM, Babamoradi H, Elcoroaristizabal S. 2015. Hyperspectral image analysis a tutorial. Anal Chim Acta 896:34–51. doi:10.1016/j.aca.2015.09.030.
  • Antonelli A, Cocchi M, Fava P, Foca G, Franchini GC, Manzini D, Ulrici A. 2004. Automated evaluation of food colour by means of multivariate image analysis coupled to a wavelet-based classification algorithm. Anal Chim Acta. 515(1):3–13. doi:10.1016/j.aca.2004.01.005.
  • Calvini R, Foca G, Ulrici A. 2016. Data dimensionality reduction and data fusion for fast characterization of green coffee samples using hyperspectral sensors. Anal Bioanal Chem. 408(26):7351–7366. doi:10.1007/s00216-016-9713-7.
  • Calvini R, Orlandi G, Foca G, Ulrici A. 2018. Development of a classification algorithm for efficient handling of multiple classes in sorting systems based on hyperspectral imaging. J Spectral Imaging. 7:a13. doi:10.1255/jsi.2018.a13.
  • Calvini R, Orlandi G, Foga G, Ulrici A. 2020. Colourgrams GUI: A graphical user-friendly interface for the analysis of large datasets of RGB images. Chemom Intell Lab Syst. 196(15):103915. doi:10.1016/j.chemolab.2019.103915.
  • Cheli F, Bontempo V, Pinotti L, Ottoboni M, Tretola M, Baldi A, Dell’Orto V. 2018. Feed analysis and animal nutrition: electronic nose as a diagnostic tool. Chem Eng Trans. 68:223–228.
  • Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna JAF. 2013. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl Spectrosc Rev. 48(2):142–159. doi:10.1080/05704928.2012.705800.
  • Dorrepaal R, Malegori C, Gowen A. 2016. Tutorial: time series hyperspectral image analysis. J Near Infrared Spec. 24(2):89–107. doi:10.1255/jnirs.1208.
  • Duchesne C, Liu JJ, MacGregor JF. 2012. Multivariate image analysis in the process industries: A review. Chemom Intell Lab Syst. 117:116–128. doi:10.1016/j.chemolab.2012.04.003.
  • Esbensen K, Geladi P. 1989. Strategy of multivariate image analysis (MIA). Chemom Intell Lab Syst. 7(1–2):67–86. doi:10.1016/0169-7439(89)80112-1.
  • Ferrari C, Foca G, Ulrici A. 2013. Handling large datasets of hyperspectral images: reducing data size without loss of useful information. Anal Chim Acta. 802:29–39. doi:10.1016/j.aca.2013.10.009.
  • Geladi P, Isaksson H, Lindqvist L, Wold S, Esbensen K. 1989. Principal component analysis of multivariate images. Chemom Intell Lab Syst. 5(3):209–220. doi:10.1016/0169-7439(89)80049-8.
  • Giraudo A, Calvini R, Orlandi G, Ulrici A, Geobaldo F, Savorani F. 2018. Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control. 94:233–240. doi:10.1016/j.foodcont.2018.07.018.
  • Giromini C, Ottoboni M, Tretola M, Marchis D, Gottardo D, Caprarulo V, Baldi A, Pinotti L. 2017. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Add Contam Part A. 34(8):1436–1445. doi:10.1080/19440049.2017.1306884.
  • Gowen AA, Marini F, Esquerre C, O’donnell C, Downey G, Burger J. 2011. Time series hyperspectral chemical imaging data: challenges, solutions and applications. Anal Chim Acta. 705(1–2):272–282. doi:10.1016/j.aca.2011.06.031.
  • Kucheryavskiy S. 2013. A new approach for discrimination of objects on hyperspectral images. Chemom Intell Lab Syst. 120:126–135. doi:10.1016/j.chemolab.2012.11.009.
  • Luciano A, Tretola M, Ottoboni M, Baldi A, Cattaneo D, Pinotti L. 2020. Potentials and challenges of former food products (Food leftover) as alternative feed ingredients. Animals. 10(1):125. doi:10.3390/ani10010125.
  • Orlandi G, Calvini R, Foca G, Ulrici A. 2018a. Automated quantification of defective maize kernels by means of multivariate image analysis. Food Control. 85:259–268. doi:10.1016/j.foodcont.2017.10.008.
  • Orlandi G, Calvini R, Pigani L, Foca G, Simone GV, Antonelli A, Ulrici A. 2018b. Electronic eye for the prediction of parameters related to grape ripening. Talanta. 186:381–388. doi:10.1016/j.talanta.2018.04.076.
  • Ottoboni M, Tretola M, Luciano A, Giuberti G, Gallo A, Pinotti L. 2019. Carbohydrate digestion and predicted glycemic index of bakery/confectionary ex-food intended for pig nutrition. Ital J Anim Sci. 1:838–849. doi:10.1080/1828051X.2019.1596758.
  • Pinotti L, Giromini C, Ottoboni M, Tretola M, Marchis D. 2019. Review: insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals. Animal. 1–11. doi:10.1017/S1751731118003622.
  • Prats-Montalbán JM, De Juan A, Ferrer A. 2011. Multivariate image analysis: a review with applications. Chemom Intell Lab Syst. 107(1):1–23. doi:10.1016/j.chemolab.2011.03.002.
  • Tretola M, Di Rosa A, Tirloni E, Ottoboni M, Giromini C, Leone F, Bernardi CEM, Dell’Orto V, Chiofalo V, Pinotti L. 2017a. Former food products safety: microbiological quality and computer vision evaluation of packaging remnants contamination. Food Addit Contam Part A. 34(8):1427–1435. doi:10.1080/19440049.2017.1325012.
  • Tretola M, Luciano A, Ottoboni M, Baldi A, Pinotti L. 2019c. Influence of traditional vs alternative dietary carbohydrates sources on the large intestinal microbiota in post-weaning piglets. Animals. 9(8):516. doi:10.3390/ani9080516.
  • Tretola M, Ottoboni M, Di Rosa A, Giromini C, Fusi E, Rebucci R, Leone F, Dell’Orto V, Chiofalo V, Pinotti L. 2017b. Former food products safety evaluation: computer vision as an innovative approach for the packaging remnants detection. J Food Qual. 2017:1–6. doi:10.1155/2017/1064580.
  • Tretola M, Ottoboni M, Luciano A, Dell’Orto V, Cheli F, Pinotti L. 2019a. Tracing food packaging contamination: an electronic nose applied to leftover food. Food Addit Contam Part A. 36:1748–1756. doi:10.1080/19440049.2019.1653498.
  • Tretola M, Ottoboni M, Luciano A, Rossi L, Baldi A, Pinotti L. 2019b. Former food products have no detrimental effects on diet digestibility, growth performance and selected plasma variables in post-weaning piglets. Italian J Anim Sci. 18:987–996. doi:10.1080/1828051X.2019.1607784.
  • Ulrici A, Foca G, Ielo MC, Volpelli LA, Lo Fiego DP. 2012. Automated identification and visualization of food defects using RGB imaging: application to the detection of red skin defect of raw hams. Innov Food Sci Emerg Tech. 16:417–426. doi:10.1016/j.ifset.2012.09.008.
  • Ulrici A, Serranti S, Ferrari C, Cesare D, Foca G, Bonifazi G. 2013. Efficient chemometric strategies for PET–PLA discrimination in recycling plants using hyperspectral imaging. Chemom Intel Lab Syst. 122:31–39. doi:10.1016/j.chemolab.2013.01.001.
  • van Raamsdonk LWD, Pinckaers VGZ, Vliege JJM, van Egmond HJ 2012. Examination of packaging materials in bakery products: a validated method for detection and quantification. Wageningen: RIKILT Wageningen UR (Rikilt report, 2012.007); 2012 [accessed 2020 May 22]. http://edepot.wur.nl/240039.
  • van Raamsdonk LWD, Rijk R, Schouten GPJ, Mennes W, Meijer GAL, Poel AFBVD, De Jong J 2011. A risk evaluation of traces of packaging materials in former food products intended as feed materials. Wageningen: RIKILT (Report / rikilt, 2011.002); 2011 [accessed 2020 May 22]. http://edepot.wur.nl/171617.
  • van Raamsdonk LWD, van der Zande M, Koelmans AA, Hoogenboom RL, Peters RJ, Groot MJ, Ad ACM P, Weesepoel YJ. 2020. Current insights into monitoring, bioaccumulation, and potential health effects of microplastics present in the food chain. Foods. 9(1):1–28. doi:10.3390/foods9010072.
  • Vermeulen P, Ebene MB, Orlando B, Fernández Pierna JA, Baeten V. 2017. Online detection and quantification of particles of ergot bodies in cereal flour using near-infrared hyperspectral imaging. Food Add Contam Part A. 34(8):1312–1319. doi:10.1080/19440049.2017.1336798.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.