647
Views
14
CrossRef citations to date
0
Altmetric
Articles

Quantification of multi-mycotoxin in cereals (maize, maize porridge, sorghum and wheat) from Limpopo province of South Africa

ORCID Icon, , ORCID Icon, , &
Pages 1922-1938 | Received 10 Feb 2020, Accepted 13 Jul 2020, Published online: 08 Sep 2020

References

  • Abia W, Warth B, Ezekiel C, Sarkanj B, Turner P, Marko D, Krska R, Sulyok M. 2017. Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food Chem Toxicol. 107:10–19. doi:10.1016/j.fct.2017.06.011.
  • Abia W, Warth B, Sulyok M, Krska R, Tchana A, Njobeh P, Dutton M, Moundipa P. 2013. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control. 31(2):438–453. doi:10.1016/j.foodcont.2012.10.006.
  • Adebiyi JA, Kayitesi E, Adebo OA, Changwa R, Njobeh PB. 2019. Food fermentation and mycotoxin detoxification: an African perspective. Food Control. 106:106–131. doi:10.1016/j.foodcont.2019.106731.
  • Adebo OA, Njobeh PB, Adebiyi JA, Kayitesi E. 2018. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. Food Biosci. 25:118–127. doi:10.1016/j.fbio.2018.08.007.
  • Adebo OA, Njobeh PB, Kayitesi E. 2019. Reduction of mycotoxins during fermentation of whole grain sorghum to whole grain ting (a southern African food). Toxins. 11:180–191. doi:10.3390/toxins11030180.
  • Adhikari M, Negi B, Kaushik N, Adhikari A, Al-Khedhairy A, Kaushik N, Choi E. 2017. T-2 mycotoxin: toxicological effects and decontamination strategies. Oncotarget. 8(20):339–341. doi:10.18632/oncotarget.15422.
  • Alshannaq A, Yu J. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Public Health. 14(6):632–637.
  • Arroyo-Manzanares N, De Ruyck K, Uka V, Gámiz-Gracia L, García-Campaña A, De Saeger S, Diana Di Mavungu J. 2018. In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Anal Bioanal Chem. 410(22):5567–5581. doi:10.1007/s00216-018-1018-6.
  • Awika J, Rooney L. 2004. Sorghum phytochemicals and their potential impact on human health. Phytochemistry. 65(9):1199–1221. doi:10.1016/j.phytochem.2004.04.001.
  • Beukes, I., Rose, L., Shephard, G., Flett, C. and Viljoen, A. (2017). Mycotoxigenic fusarium species associated with grain crops in South Africa – A review. South Afr J Sci. 113(4):1–12. doi:10.17159/sajs.2017/20160121.
  • Braicu C, Cojocneanu-Petric R, Jurj A, Gulei D, Taranu I, Gras A, Marin D, Berindan-Neagoe I. 2016. Microarray based gene expression analysis and exposed to zearalenone: significance to human health. BMC Gen. 17(1):646–649. doi:10.1186/s12864-016-2984-8.
  • Bullerman L, Bianchini A. 2007. Stability of mycotoxins during food processing. Int J Food Microbiol. 119(1–2):140–146. doi:10.1016/j.ijfoodmicro.2007.07.035.
  • [EC] European commission. 2006a. Commission regulation no.401/2006 official. J Eur Union. L70:12–34. [accessed 2019 Mar 11]. https://www.fsvps.ru/fsvps-docs/ru/usefulinf/files/es401-2006.pdf.
  • [EC] European Commission. 2006b. Commission regulation no 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in food stuff. Off J Eur Union. 354:5–24. [accessed 2018 Oct 12]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF.
  • [EFSA] European Food Safety Authority. 2011. Scientific opinion on the risk for public health related to the presence of zearalenone in food. Efsa J. 9:1–124. doi:10.2903/j.efsa.2011.2197.
  • Changwa R, Abia W, Msagati T, Nyoni H, Ndleve K, Njobeh P. 2018. Multi-mycotoxin occurrence in dairy cattle feeds from the gauteng province of South Africa: a pilot study using UHPLC-QTOF-MS/MS. Toxins. 10(7):294–310. doi:10.3390/toxins10070294.
  • [FAOSTAT] Food and Agriculture Organization Statistics. 2019. [accessed 2019 Jun 8] http://www.fao.org/fasostat/en/.
  • Chilaka CA, De Kock S, Phoku JZ, Mwanza M, Egbuta MA, Dutton MF. 2012. Fungal and mycotoxin contamination of South African commercial maize. J Food Agricult Environ. 10(2):296–303.
  • De Santis B, Debegnach F, Gregori E, Russo S, Marchegiani F, Moracci G, Brera C. 2017. Development of a LC-MS/MS method for the multi-mycotoxin determination in composite cereal-based samples. Toxins. 9(5):169–179. doi:10.3390/toxins9050169.
  • [DoH] South African National Department of Health. 2016 September 5. Regulations governing tolerances for fungus-produced toxins in foodstuffs: amendment. Gov Not Gov Gazette. 40250(2016):4–5. [accessed 2019 Jul 19]. https://www.gov.za/sites/default/files/gcis_document/201609/40250gon987.pdf.
  • Díaz Nieto C, Granero A, Zon M, Fernández H. 2018. Sterigmatocystin: a mycotoxin to be seriously considered. Food Chem Toxicol. 118:460–470.
  • Ezekiel C, Sulyok M, Ogara I, Abia W, Warth B, Šarkanj B, Turner P, Krska R. 2019. Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food Chem Toxicol. 128:171–179.
  • Gbashi S, Madala NE, De Saeger S, De Boevre M, Adekoya I, Adebo OA, Njobeh PB. 2018. The socio-economic impact of mycotoxin contamination in Africa. In: Njobeh PB, Stepman. F, editors. Fungi and mycotoxins - their occurrence, impact on health and the economy as well as pre- and postharvest management strategies. Croatia, London: InTech; p. 1–22. doi:10.5772/intechopen.79328.
  • Gbashi S, Madala NE, De Saeger S, De Boevre M, Njobeh PB. 2019. Numerical optimization of temperature-time degradation of multiple mycotoxins. Food Chem Toxicol. 125:289–304. doi:10.1016/j.fct.2019.01.009.
  • Girard AL, Awika JM. 2018. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J Cereal Sci. 84:112–124. doi:10.1016/j.jcs.2018.10.009.
  • Gosetti F, Mazzucco E, Zampieri D, Gennaro M. 2010. Signal suppression/enhancement in high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 1217(25):3929–3937. doi:10.1016/j.chroma.2009.11.060.
  • Grain SA 2018. Maize quality 2016/2017: special focus on mycotoxins. [Accessed 2019 Apr 15]. https://www.grainsa.co.za/maize-quality-2016/2017-special-focus-on-mycotoxins.
  • Hickert S, Bergmann M, Ersen S, Cramer B, Humpf H. 2015. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 32(1):7–18. doi:10.1007/s12550-015-0233-7.
  • Kim D, Hong S, Kang J, Cho S, Lee K, An T, Lee C, Chung S. 2017. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins. 9(3):106–122. doi:10.3390/toxins9030106.
  • Kresse M, Drinda H, Romanotto A, Speer K. 2019. Simultaneous determination of pesticides, mycotoxins, and metabolites as well as other contaminants in cereals by LC-LC-MS/MS. J Chromatogr B. 11(17):86–102. doi:10.1016/j.jchromb.2019.04.013.
  • Magoha H, Kimanya M, De Meulenaer B, Roberfroid D, Lachat C, Kolsteren P. 2014. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern Child Nutr. 12(3):516–527. doi:10.1111/mcn.12155.
  • Malachová A, Stránská M, Václavíková M, Elliott C, Black C, Meneely J, Hajšlová J, Ezekiel C, Schuhmacher R, Krska R. 2017. Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Anal Bioanal Chem. 410(3):801–825. doi:10.1007/s00216-017-0750-7.
  • Mngqawa P, Shephard G, Green I, Ngobeni S, de Rijk T, Katerere D. 2015. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Mpumalanga Provinces). Food Add Contamin Part B. 9(1):38–45.
  • Ncube E, Flett BC, Waalwijk C, Viljoen A. 2011. Fusarium spp. and levels of fumonisins in maize produced by subsistence farmers in South Africa. S Afr J Sci. 107(1–2):1–7. doi:10.4102/sajs.v107i1/2.367.
  • Oliveira R, Goncalves S, Oliveira M, Dilkin P, Mallmann C, Freitas R, Bianchi P, Correa B. 2017. Natural occurrence of tenuazonic acid and Phoma sorghina in Brazilian sorghum grains at different maturity stages. Food Chem. 230:491–496. doi:10.1016/j.foodchem.2017.03.079.
  • Phoku JZ, Dutton MF, Njobeh PB, Mwanza M, Egbuta MA, Chilaka CA. 2012. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B1 in Limpopo Province, South Africa. Food Add Contam Part A. 29(11):1743–1751. doi:10.1080/19440049.2012.708671.
  • Resanovic RD, Vučićević MZ, Nedeljković-Trailović JB, Maslić-Strižak DN, Jaćević VM. 2013. Mycotoxins and their effect on human health. Prose Serbian Mat Nat Sci. 113(124):315–324.
  • [SANTE] Directorate General for Health and Food Safety. 2016. Guidance document on identification of mycotoxins in food and feed SANTE/12089/2016 Implemented by 01/01/2017, p.2–4. [Accessed 2020 May 30] https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_sampling_guid-doc-ident-mycotoxins.pdf.
  • Righetti L, Paglia G, Galaverna G, Dall’Asta C. 2016. Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins. 8(12):361. doi:10.3390/toxins8120361.
  • Rychlik M, Lepper H, Weidner C, Asam S. 2016. Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management. Food Control. 68:181–185.
  • Schaarschmidt S, Fauhl-Hassek C. 2019. Mycotoxins during the processes of nixtamalization and tortilla production. Toxins. 11(4):227. doi:10.3390/toxins11040227.
  • Shephard G, Burger H, Gambacorta L, Krska R, Powers S, Rheeder J, Solfrizzo M, Sulyok M, Visconti A, Warth B, et al. 2013. Mycological analysis and multi-mycotoxins in maize from rural subsistence farmers in the former Transkei, South Africa. J Agric Food Chem. 61(34):8232–8240. doi:10.1021/jf4021762.
  • Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol and its toxicity. Interdiscip Toxicol. 3(3):94–99. doi:10.2478/v10102-010-0019-x.
  • Solfrizzo M, Gambacorta L, Bibi R, Ciriaci M, Paoloni A, Pecorelli I. 2018. Multimycotoxin analysis by LC-MS/MS in cereal food and feed: comparison of different approaches for extraction, purification, and calibration. J AOAC Int. 101(3):647–657. doi:10.5740/jaoacint.17-0339.
  • [WHO] World Health Organization. 2018. Fumonisins are a significant health risk to livestock, and potentially also to humans. [accessed 2019 May 14]. http://www.who.int/foodsafety/areas_work/chemical-risks/gems-food/en/.
  • Suman M, Generotti S. 2015. Transformation of mycotoxins upon food processing: masking, binding and degradation phenomena. In: Dall’Asta C, Berthiller F, editors. Masked mycotoxins in food: formation, occurrence and toxicological relevance. Cambridge, England: Royal Society of Chemistry Publishing; p. 73–89.
  • Sun J, Li W, Zhang Y, Hu X, Wu L, Wang B. 2016. QuEChERS purification combined with ultrahigh-performance liquid chromatography tandem mass spectrometry for simultaneous quantification of 25 mycotoxins in cereals. Toxins. 8(12):375–381. doi:10.3390/toxins8120375.
  • Taye W, Ayalew A, Denjene M, Chala A. 2018. Fungal invasion and mycotoxin contamination of stored sorghum grain as influenced by threshing methods. Inter J Pest Manag. 64:66–76. doi:10.1080/09670874.2017.1327681.
  • Udomkun P, Wiredu A, Nagle M, Bandyopadhyay R, Müller J, Vanlauwe B. 2017. Mycotoxins in Sub-Saharan Africa: present situation, socio-economic impact, awareness, and outlook. Food Control. 72:110–122. doi:10.1016/j.foodcont.2016.07.039.
  • Wrigley CW. 2019. Cereals. In: Swainson M, editor. Swainson’s handbook of technical and quality management for the food manufacturing sector. United Kingdom, Oxford: Woodhead Publishing; p. 457–479. doi:10.1016/b978-1-78242-275-4.00018-6.
  • Zhang XM. 2004. Analysis of pharmaceutical inactive ingredients. In: Chan CC, Lam H, Lee YC, editors. Analytical method validation and instrument performance verification. United State of America, Canada: John Wiley & Sons; p. 85–94. doi:10.1002/0471463728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.