106
Views
3
CrossRef citations to date
0
Altmetric
Articles

Does arsenic pose a health concern after consumption of clay products?

, , &
Pages 113-124 | Received 16 Jul 2020, Accepted 19 Oct 2020, Published online: 10 Dec 2020

References

  • Al-Rmalli SW, Jenkins RO, Watts MJ, Haris PI. 2010. Risk of human exposure to arsenic and other toxic elements from geophagy: trace element analysis of baked clay using inductively coupled plasma mass spectrometry. Environ Health. 9:79. doi:10.1186/1476-069X-9-79.
  • Appleton JD, Cave MR, Wragg J. 2012. Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Sci Total Environ. 435–436:21–29. doi:10.1016/j.scitotenv.2012.07.002.
  • Avula B, Wang Y-H, Khan IA. 2015. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS. J AOAC Int. 98(2):321–329. doi:10.5740/jaoacint.14-166.
  • [ATSDR] Agency for toxic Substances and Disease Registry. 2007. Toxicological profile: arsenic. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
  • Belgian Superior Health Council.2015. Advice No. 9149: Arsenic and other elements in algae and dietary supplements based on algae. https://www.health.belgium.be/en/advisory-report-9149-arsenic
  • Bolan S, Kunhikrishnan A, Seshadri B, Choppala G, Naidu R, Bolan NS, Ok YS, Zhang M, Li C-G, Li F, et al. 2017. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal(loid)s in complementary medicines. Environ Int. 108:103–118. doi:10.1016/j.envint.2017.08.005.
  • Chávez-Capilla T, Beshai M, Maher W, Kell T, Foster S. 2016. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract. Food Chem. 212:189–197. doi:10.1016/j.foodchem.2016.05.163.
  • Cheyns K, Demaegdt H, Waegeneers N, Ruttens A. Accepted. Intake of food supplements based on algae or cyanobacteria may pose a health risk due to elevated concentrations of arsenic species. Food Addit Contam Part A.
  • [EFSA] European Food Safety Authority. 2005. Opinion of the scientific committee on a request from EFSA related to A harmonised approach for risk assessment of substances which are both genotoxic and carcinogenic. Efsa J. 3:282. doi:10.2903/j.efsa.2005.282
  • [CONTAM] EFSA Panel on Contaminants in the Food Chain. 2009. Scientific opinion on arsenic in food. Efsa J. 7(10):n/a-n/a.
  • [CONTAM] EFSA Panel on Contaminants in the Food Chain. 2015. Scientific opinion on acrylamide in food: acrylamide in food. Efsa J. 13(6):4104.
  • Cheyns K, Waegeneers N, Van de Wiele T, Ruttens A. 2017. Arsenic release from foodstuffs upon food preparation. J Agric Food Chem. 65(11):2443–2453. doi:10.1021/acs.jafc.6b05721.
  • [EFSA] European Food Safety Authority. 2014. Dietary exposure to inorganic arsenic in the European population. Efsa J. 12(3):3597.
  • De Temmerman L, Waegeneers N, Blanpain AC, Goeyens L, De Galan S, Ruttens A. 2010. SPECAS: report of a study by order of the federal public service public health, food chain safety and environment. Project RCO-RF 6205 ‘Speciation of arsenic in fish and other foodstuff’. pp 98.
  • Denys S, Caboche J, Tack K, Rychen G, Wragg J, Cave M, Jondreville C, Feidt C. 2012. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ Sci Technol. 46(11):6252–6260. doi:10.1021/es3006942.
  • Dolan S, Nortrup D, Bolger M, Capar SG. 2003. Analysis of dietary supplements for arsenic, cadmium, mercury, and lead using inductively coupled plasma mass spectrometry. J Agri Food Chem. 51:1307–1312. doi:10.1021/jf026055x.
  • [JECFA] Joint FAO/WHO expert committee on food additives. 2010. Seventy-second meeting. Rome (Italy): Summary and conclusions.
  • [JECFA] Joint FAO/WHO expert committee on food additives. 2011. Safety evaluation of certain contaminants in food. Prepared by the Seventy-second meeting. Rome, Italy:JECFA.
  • EN 16802. 2016. Foodstuffs - Determination of elements and their chemical species - Determination of inorganic arsenic in foodstuffs of manire and plant origin. https://infostore.saiglobal.com/en-us/Standards/EN-16802-2016-341702_SAIG_CEN_CEN_782717/
  • García-Rico L, Tejeda-Valenzuela L. 2013. Total and inorganic arsenic in dietary supplement supplies in northern Mexico. Environ Monit Assess. 185(7):6111–6117. doi:10.1007/s10661-012-3011-4.
  • Genuis SJ, Schwalfenberg G, Siy A-KJ, Rodushkin I. 2012. Toxic element contamination of natural health products and pharmaceutical preparations. PLoS ONE. 7(11):e49676. doi:10.1371/journal.pone.0049676.
  • [IARC] International Agency for Research on Cancer Working Group on the Evaluation of Carcinogenic Risks to Humans. 2012. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 100(Pt C):11–465.
  • Hedegaard RV, Rokkjær I, Sloth JJ. 2013. Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae–a possible contributor to inorganic arsenic exposure. Anal Bioanal Chem. 405(13):4429–4435. doi:10.1007/s00216-013-6835-z.
  • [JECFA] Joint FAO/WHO Expert Committee on Food Additives. 1989. Evaluation of certain food additives and contaminants. WHO Food Additive Report Series, No. 24. Geneva: International Programme on Chemical Safety, World Health Organization
  • .Juhasz AL, Smith E, Nelson C, Thomas DJ, Bradham K. 2014. Variability associated with As in vivo–in vitro correlations when using different bioaccessibility methodologies. Environ Sci Technol. 48(19):11646–11653. doi:10.1021/es502751z.
  • Koch I, Moriarty M, House K, Sui J, Cullen WR, Saper RB, Reimer KJ. 2011. Bioaccessibility of lead and arsenic in traditional Indian medicines. Sci Total Environ. 409(21):4545–4552. doi:10.1016/j.scitotenv.2011.07.059.
  • Luvonga C, Rimmer CA, Yu LL, Lee SB. 2020. Organoarsenicals in seafood: occurrence, dietary exposure, toxicity, and risk assessment considerations – A review. J Agric Food Chem. 68:943–960. doi:10.1021/acs.jafc.9b07532.
  • Marín S, Pardo O, Sánchez A, Sanchis Y, Vélez D, Devesa V, Font G, Yusà V. 2018. Assessment of metal levels in foodstuffs from the region of Valencia (Spain). Toxicol Rep. 5:654–670. doi:10.1016/j.toxrep.2018.05.005.
  • Matschullat J. 2000. Arsenic in the geosphere–a review. Sci Total Environ. 249(1–3):297–312. doi:10.1016/S0048-9697(99)00524-0.
  • Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu YG, Islam R. 2008. Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol. 42:1051–1057.
  • Reeuwijk NM, Klerx WNM, Kooijman M, Hoogenboom LAP, Rietjens IMCM, Martena MJ. 2013. Levels of lead, arsenic, mercury and cadmium in clays for oral use on the Dutch market and estimation of associated risks. Food Addit Contam Part Chem Anal Control Expo Risk Assess. 30(9):1535–1545. doi:10.1080/19440049.2013.811297.
  • Ruttens A, Blanpain AC, De Temmerman L, Waegeneers N. 2012. Arsenic speciation in food in Belgium: part 1: fish, molluscs and crustaceans. J Geochem Explor. 121:55–61. doi:10.1016/j.gexplo.2012.07.003.
  • Ruttens A, Cheyns K, Blanpain AC, De Temmerman L, Waegeneers N. 2018. Arsenic speciation in food in Belgium. Part 2: cereals and cereal products. Food Chem Toxicol. 118:32–41. doi:10.1016/j.fct.2018.04.040.
  • Saper RB, Phillips RS, Sehgal A, Khouri N, Davis RB, Paquin J, Thuppil V, Kales SN. 2008. Lead, mercury, and arsenic in US- and Indian-manufactured ayurvedic medicines sold via the internet. JAMA J Am Med Assoc. 300(8):915–923. doi:10.1001/jama.300.8.915.
  • Thiry C, Schneider Y-J, Pussemier L, De Temmerman L, Ruttens A. 2013. Selenium bioaccessibility and bioavailability in se-enriched food supplements. Biol Trace Elem Res. 152(1):152–160. doi:10.1007/s12011-013-9604-0.
  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA. 2006. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol. 40:4903–4908. doi:10.1021/es060222i.
  • Xia Q, Peng C, Lamb D, Mallavarapu M, Naidu R, Ng JC. 2016. Bioaccessibility of arsenic and cadmium assessed for in vitro bioaccessibility in spiked soils and their interaction during the Unified BARGE Method (UBM) extraction. Chemosphere. 147:444–450. doi:10.1016/j.chemosphere.2015.12.091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.