123
Views
1
CrossRef citations to date
0
Altmetric
original Article

A sensitive spectrofluorimetry method based on S and N dual-doped carbon nanoparticles for ultra-trace detection of ferrocyanide ion in food salt samples

, , , , , & show all
Pages 195-207 | Received 05 Sep 2020, Accepted 09 Nov 2020, Published online: 10 Dec 2020

References

  • Afkhami A, Pirdadeh-Beiranvand M, Madrakian T. 2017. A Method based on ultrasound-assisted solidification of floating drop microextraction technique for the spectrophotometric determination of curcumin in turmeric powder. Anal Bioanal Chem Res. 4:1–10.
  • Avron M, Shavit N. 1963. A sensitive and simple method for determination of ferrocyanide. Anal Biochem. 6:549–554. doi:10.1016/0003-2697(63)90149-0.
  • Baig MMF, Chen Y-C. 2017. Bright carbon dots as fluorescence sensing agents for bacteria and curcumin. J Colloid Interface Sci. 501:341–349. doi:10.1016/j.jcis.2017.04.045.
  • Baker SN, Baker GA. 2010. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 49:6726–6744. doi:10.1002/anie.200906623.
  • Bian W, Wang X, Wang Y, Yang H, Huang J, Cai Z, Choi MMF. 2018. Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence. 33:174–180. doi:10.1002/bio.3390.
  • Bourlinos AB, Trivizas G, Karakassides MA, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, et al. 2015. Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon. 83:173–179. doi:10.1016/j.carbon.2014.11.032.
  • Ding H, Yu S-B, Wei J-S, Xiong H-M. 2016. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 10:484–491. doi:10.1021/acsnano.5b05406.
  • Drew DM. 1973. Simultaneous determination of ferrocyanide and ferricyanide in aqueous solutions using infrared spectrometry. Anal Chem. 45:2423–2424. doi:10.1021/ac60336a029.
  • Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C. 2017. An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta. 968:85–96. doi:10.1016/j.aca.2017.02.038.
  • Gong X, Zhang Q, Gao Y, Shuang S, Choi MMF, Dong C. 2016. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces. 8:11288–11297. doi:10.1021/acsami.6b01577.
  • Gupta S, Pel L, Steiger M, Kopinga K. 2015. The effect of ferrocyanide ions on sodium chloride crystallization in salt mixtures. J Cryst Growth. 410:7–13. doi:10.1016/j.jcrysgro.2014.10.018.
  • Hu Q, Liu L-F, Sun H, Han J, Gong X, Liu L, Yang Z-Q. 2020. An ultra-selective fluorescence method with enhanced sensitivity for the determination of manganese (VII) in food stuffs using carbon quantum dots as nanoprobe. J Food Compos Anal. 88:103447. doi:10.1016/j.jfca.2020.103447
  • Hu Q, Pan Y, Gong X, Rao S-Q, Xiao L, Liu L, Yang Z-Q. 2020. A sensitivity enhanced fluorescence method for the detection of ferrocyanide ions in foodstuffs using carbon nanoparticles as sensing agents. Food Chem. 308:125590. doi:10.1016/j.foodchem.2019.125590
  • Kidby DK. 1969. Direct spectrophotometric estimation of ferrocyanide and its possible uses in sulfhydryl oxidation studies. Anal Biochem. 28:230–242. doi:10.1016/0003-2697(69)90174-2.
  • Koga A, Niino Y. 2004. Analysis of hexacyanoferrate (II) in salt. Bull Soc Sea Water Sci. 58:24–29.
  • Kubota H, Onishi Y, Yomota C, Tanamoto K. 2004. Analysis of ferrocyanides in food grade salts. Nihon Shokuhin Kagaku Gakkaishi (Jpn J Food Chem). 11:32–35.
  • Li Y-L, Liu Z-F, Xie L-S, Kong L, Liu S-P. 2007. Determination of potassium ferrocyanide in foods by resonance rayleigh scattering method with double-charged triaminotriphenylmethane dyes. Chin J Chem. 25:947–952. doi:10.1002/cjoc.200790184.
  • Lu W, Gong X, Nan M, Liu Y, Shuang S, Dong C. 2015. Comparative study for N and S doped carbon dots: synthesis, characterization and applications for Fe3+ probe and cellular imaging. Anal Chim Acta. 898:116–127. doi:10.1016/j.aca.2015.09.050.
  • Miller JN, Miller JC. 2010. Statistics and chemometrics for analytical chemistry. 6th ed. Upper Saddle River, NJ: Prentice Hall Ptr Press.
  • Na M, Chen Y, Han Y, Ma S, Liu J, Chen X. 2019. Determination of potassium ferrocyanide in table salt and salted food using a water-soluble fluorescent silicon quantum dots. Food Chem. 288:248–255. doi:10.1016/j.foodchem.2019.02.111.
  • Roberts RF, Wilson RH. 1968. The determination of ferrocyanide and related compounds in commercial sodium chloride. Analyst. 93:237–243. doi:10.1039/an9689300237.
  • Saitoh K, Soeta N, Minamisawa H, Shibukawa M. 2013. On-line redox derivatization liquid chromatography for selective separation of Fe(II) and Fe(III) cyanide complexes using porous graphitic carbon. Anal Sci. 29:715–721. doi:10.2116/analsci.29.715.
  • Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. 2012. The origin of fluorescence from graphene oxide. Sci Rep. 2:792. doi:10.1038/srep00792.
  • Soo Lim H, Young Hwang J, Choi E, Lee G, Sun Yoon S, Kim M. 2018. Development and validation of HPLC method for the determination of ferrocyanide ion in food grade salts. Food Chem. 239:1167–1174. doi:10.1016/j.foodchem.2017.07.070.
  • Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu -J-J. 2013. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 64:424–434. doi:10.1016/j.carbon.2013.07.095.
  • Suzuki Y, Ishigaki M, Oshita K, Yamane T, Kawakubo S. 2013. Development of a portable LED-based 8-channel reflective colorimeter and its application to simple determination of hexacyanoferrate (II) in common salts. Bull Soc Sea Water Sci. 67:47–51.
  • Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, et al. 2012. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 6:5102–5110. doi:10.1021/nn300760g.
  • Wang C, Sun D, Zhuo K, Zhang H, Wang J. 2014. Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Adv. 4:54060–54065. doi:10.1039/C4RA10885J.
  • Zhai X, Zhang P, Liu C, Bai T, Li W, Dai L, Liu W. 2012. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun. 48:7955–7957. doi:10.1039/c2cc33869f.
  • Zhang J, Wang J, Fu J, Fu X, Gan W, Hao H. 2018. Rapid synthesis of N, S co-doped carbon dots and their application for Fe3+ ion detection. J Nanopart Res. 20:41. doi:10.1007/s11051-018-4141-6.
  • Zhong Y, Chen Q, Li J, Pan X, Han Z, Dong W. 2017. One-step synthesis of nitrogen and chlorine co-doped carbon quantum dots for detection of Fe3+. Nano. 12:1750135. doi:10.1142/S1793292017501351.
  • Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. 2013. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 52:3953–3957. doi:10.1002/anie.201300519.
  • Ziyatdinova GK, Nizamova AM, Budnikov HC. 2012. Voltammetric determination of curcumin in spices. J Anal Chem. 67:591–594. doi:10.1134/S1061934812040132.
  • Zokhtareh R, Rahimnejad M. 2018. A novel sensitive electrochemical sensor based on nickel chloride solution modified glassy carbon electrode for curcumin determination. Electroanalysis. 30:921–927. doi:10.1002/elan.201700770.
  • Zuo G, Xie A, Li J, Su T, Pan X, Dong W. 2017. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection. J Phys Chem C. 121:26558–26565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.