308
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Development of an ultrasensitive spectrophotometric method for carmine determination based on fluorescent carbon dots

, , , , , , & show all
Pages 731-740 | Received 12 Jan 2021, Accepted 02 Feb 2021, Published online: 08 Mar 2021

References

  • Alghamdi AH, Alshammery HM, Abdalla MA, Alghamdi AF. 2019. Determination of carmine food dye (E120) in foodstuffs by stripping voltammetry. J AOAC Int. 92(5):1454–1459. doi:10.1093/jaoac/92.5.1454.
  • Arif A, Ahmad A, Ahmad M. 2020. Toxicity assessment of carmine and its interaction with calf thymus DNA. J Biomol Struct Dyn. 1–11. doi:10.1080/07391102.2020.1794962.
  • Baker SN, Baker GA. 2010. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed. 49(38):6726–6744. doi:10.1002/anie.200906623.
  • Bera MK, Mohapatra S. 2020. Ultrasensitive detection of glyphosate through effective photoelectron transfer between CdTe and chitosan derived carbon dot. Colloids Surf A Physicochem Eng Asp. 596:124710. doi:10.1016/j.colsurfa.2020.124710.
  • Bian W, Wang X, Wang Y, Yang H, Huang J, Cai Z, Choi MMF. 2018. Boron and nitrogen co-doped carbon dots as a sensitive fluorescent probe for the detection of curcumin. Luminescence. 33(1):174–180. doi:10.1002/bio.3390.
  • Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C. 2017. Two of a kind but different: luminescent carbon quantum dots from Citrus peels for iron and tartrazine sensing and cell imaging. Talanta. 175:305–312. doi:10.1016/j.talanta.2017.07.053.
  • Chavada VD, Bhatt NM, Sanyal M, Shrivastav PS. 2020. Modulation of inner filter effect of non-conjugated silver nanoparticles on blue emitting ZnS quantum dots for the quantitation of betahistine. Spectrochim Acta A Mol Biomol Spectrosc. 240:118575. doi:10.1016/j.saa.2020.118575.
  • CODEX Alimentarius. 2013. Codex general standard for food additives. CODEX STAN 192–1995.
  • Deng J, Lu Q, Hou Y, Liu M, Li H, Zhang Y, Yao S. 2015. Nanosensor composed of nitrogen-doped carbon dots and gold nanoparticles for highly selective detection of cysteine with multiple signals. Anal Chem. 87(4):2195‒2203. doi:10.1021/ac503595y.
  • European Commission. 1994. Commission directive 94/36/EC on colours for use in foodstuffs. Off J Eur Community L. 237:13‒29.
  • Gogoi J, Chowdhury D. 2020. Calcium-modified carbon dots derived from polyethylene glycol: fluorescence-based detection of Trifluralin herbicide. J Mater Sci. 55(25):11597–11608. doi:10.1007/s10853-020-04839-5.
  • Hu Q, Liu L-F, Sun H, Han J, Gong X, Liu L, Yang Z-Q. 2020a. An ultra-selective fluorescence method with enhanced sensitivity for the determination of manganese (VII) in food stuffs using carbon quantum dots as nanoprobe. J Food Compos Anal. 88::103447. doi:10.1016/j.jfca.2020.103447.
  • Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L, Yang Z-Q. 2020b. Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem. 325:126946. doi:10.1016/j.foodchem.2020.126946.
  • Huang HY, Shih YC, Chen YC. 2002. Determining eight colorants in milk beverages by capillary electrophoresis. J Chromatogr A. 959(1–2):317–325. doi:10.1016/S0021-9673(02)00441-7.
  • Huang X, Yang L, Hao S, Zheng B, Yan L, Qu F, Asirid AM, Sun X. 2017. N-Doped carbon dots: a metal-free co-catalyst on hematite nanorod arrays toward efficient photoelectrochemical water oxidation. Inorg Chem Front. 4(3):537‒540. doi:10.1039/C6QI00517A.
  • [JECFA] Joint FAO/WHO Expert Committee on Food Additives. 2001. Evaluation of certain food additives and contaminants, WHO Technical Report Series, No. 901. Geneva (Switzerland): World Health, Organization; p. 10–12.
  • Jia J, Lu W, Li L, Gao Y, Jiao Y, Han H, Dong C, Shuang S. 2020. Orange-emitting N-doped carbon dots as fluorescent and colorimetric dual-mode probes for nitrite detection and cellular imaging. J Mater Chem B. 8(10):2123–2127. doi:10.1039/C9TB02934F.
  • Jiang K, Sun S, Zhang L, Lu Y, Wu A, Cai C, Lin H. 2015. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed. 54(18):5360–5363. doi:10.1002/anie.201501193.
  • Jiao Y, Gong X, Han H, Gao Y, Lu W, Liu Y, Xian M, Shuang S, Dong C. 2018. Facile synthesis of orange fluorescence carbon dots with excitation independent emission for pH sensing and cellular imaging. Anal Chim Acta. 1042:125–132. doi:10.1016/j.aca.2018.08.044.
  • Li H, Kang Z, Liu Y, Lee ST. 2012. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 22(46):24230–24253. doi:10.1039/c2jm34690g.
  • Li P, Wu C, Xu Y, Cheng D, Lu Q, Gao J, Yang W, Zhu X, Liu M, Li H, et al. 2020. Group IV nanodots: newly emerging properties and application in biomarkers sensing. TrAC Trends Anal Chem. 131:116007. doi:10.1016/j.trac.2020.116007.
  • Lim HS, Choi JC, Song SB, Kim M. 2014. Quantitative determination of carmine in foods by high-performance liquid chromatography. Food Chem. 158:521–526. doi:10.1016/j.foodchem.2014.02.122.
  • Lin Y, Zhou Q, Tang D, Niessner R, Knopp D. 2017. Signal-on photoelectrochemical immunoassay for Aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem. 89(10):5637–5645. doi:10.1021/acs.analchem.7b00942.
  • Liu H, Zhu T, Zhang Y, Qi S, Huang A, Sun Y. 1995. Determination of synthetic colourant food additives by capillary zone electrophoresis. J Chromatogr A. 718(2):448–453. doi:10.1016/0021-9673(95)00682-6.
  • Liu J, Zhang J, Wang M, Su X. 2021. Silicon quantum dots based dual-mode fluorometric and colorimetric sensing of D-penicillamine. Talanta. 224:121886. doi:10.1016/j.talanta.2020.121886.
  • Liu Y, Gong X, Dong W, Zhou R, Shuang S, Dong C. 2018. Nitrogen and phosphorus dual-doped carbon dots as a label-free sensor for curcumin determination in real sample and cellular imaging. Talanta. 183:61–69. doi:10.1016/j.talanta.2018.02.060.
  • Lv S, Li Y, Zhang K, Lin Z, Tang D. 2017. Carbon Dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl Mater Interfaces. 9(44):38336–38343. doi:10.1021/acsami.7b13272.
  • National Health and Family Planning Commission (NHFPC) of PRC. 2014 National food safety standards, general standard for food additives. www.nhfpc.gov.cn.
  • Ni P, Chen C, Jiang Y, Zhang C, Wang B, Cao B, Li C, Lu Y. 2019. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase. Sens Actuators B Chem. 301:127080. doi:10.1016/j.snb.2019.127080.
  • Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascon JM. 2008. Graphene oxide dispersions in organic solvents. Langmuir. 24(19):10560‒10564. doi:10.1021/la801744a.
  • Su A, Wang D, Shu X, Zhong Q, Chen Y, Liu J, Wang Y. 2018. Synthesis of fluorescent carbon quantum dots from dried lemon peel for determination of carmine in drinks. Chem Res Chin Univ. 34(2):164–168. doi:10.1007/s40242-018-7286-z.
  • Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ. 2013. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 64:424–434. doi:10.1016/j.carbon.2013.07.095.
  • Tang B, Xi C, Zou Y, Wang G, Li X, Zhang L, Chen D, Zhang J. 2014. Simultaneous determination of 16 synthetic colorants in hotpot condiment by high performance liquid chromatography. J ChromatogrB. 960:87–91. doi:10.1016/j.jchromb.2014.04.026.
  • Wang X, Yang Y, Huo D, Ji Z, Ma Y, Yang M, Luo H, Luo X, Hou C, Lv J. 2020. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate. Microchimica Acta. 187(6):341. doi:10.1007/s00604-020-04304-9.
  • Wei L, Yang Y, Sun D. 2020. Rapid detection of carmine in black tea with spectrophotometry coupled predictive modelling. Food Chem. 329:127177. doi:10.1016/j.foodchem.2020.127177.
  • Xavier SSJ, Kumar TR, Ranjani M, Yoo DJ, Archana V, Charles L, Annaraj J, Kumar GG. 2019. Environmentally benign carbon nanodots prepared from lemon for the sensitive and selective fluorescence detection of Fe(III) and tannic acid. J Fluoresc. 29(3):631–643. doi:10.1007/s10895-019-02360-w.
  • Xu M, Gao Z, Zhou Q, Lin Y, Lu M, Tang D. 2016. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosens Bioelectron. 86:978–984. doi:10.1016/j.bios.2016.07.105.
  • Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, et al. 2020. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Materl Chem B. 8(45):10290‒10308. doi:10.1039/D0TB01881C.
  • Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L. 2019. Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchimica Acta. 186(2):113. doi:10.1007/s00604-018-3221-8.
  • Yang H, Long Y, Li H, Pan S, Liu H, Yang J, Hu X. 2018. Carbon dots synthesized by hydrothermal process via sodium citrate and NH4HCO3 for sensitive detection of temperature and sunset yellow. J Colloid Interface Sci. 516:192–201. doi:10.1016/j.jcis.2018.01.054.
  • Yu Z, Huang L, Chen J, Tang Y, Xia B, Tang D. 2020. Full-spectrum responsive photoelectrochemical immunoassay based on N2-In2S3@carbon dot nanoflowers. Electrochim Acta. 332:135473. doi:10.1016/j.electacta.2019.135473.
  • Yue X, Zhou Z, Wu Y, Jie M, Li Y, Guo H, Bai Y. 2020. A green carbon dots-based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite–thiol reaction. New J Chem. 44(20):8503–8511. doi:10.1039/D0NJ01025A.
  • Zhou Z, Tang H, Chen S, Huang Y, Zhu X, Li H, Zhang Y, Yao S. 2020. A turn-on red-emitting fluorescent probe for determination of copper(II) ions in food samples and living zebrafish. Food Chem. doi:10.1016/j.foodchem.2020.128513
  • Zhu X, Zhao T, Nie Z, Liu Y, Yao S. 2015. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal Chem. 87(16):8524‒8530. doi:10.1021/acs.analchem.5b02167.
  • Zhu X, Zhao T, Nie Z, Miao Z, Liu Y, Yao S. 2016. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale. 8(4):2205‒2211. doi:10.1039/C5NR07826A.
  • Zhuang Q, Li L, Ding Y, Zeng H, Wu Y. 2019. Highly luminescent nitrogen-doped carbon dots as “Turn-On” fluorescence probe for selective detection of melamine. Chem Select. 4:84–89.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.