730
Views
1
CrossRef citations to date
0
Altmetric
Review

Biosensing approaches to detect potential milk contaminants: a comprehensive review

ORCID Icon, , , &
Pages 1169-1192 | Received 07 Dec 2020, Accepted 20 Mar 2021, Published online: 14 May 2021

References

  • Abedalwafa MA, Li Y, Ni C, Wang L. 2019. Colorimetric sensor arrays for the detection and identification of antibiotics. Anal Methods. 11:2836–2854.
  • Abera BD, Falco A, Ibba P, Cantarella G, Petti L, Lugli P. 2019. Development of flexible dispense-printed electrochemical immunosensor for aflatoxin M1 detection in milk. Sensors. 19:3912–3923.
  • Adrian J, Pasche S, Pinacho DG, Font H, Diserens J-M, Sa´nchez-Baeza F, Granier B, Voirin G, Marco M-P. 2009. Wavelength-interrogated optical biosensor for multi-analyte screening of sulfonamide, fluoroquinolone, b-lactam and tetracycline antibiotics in milk. Trends Anal Chem. 28:769–777.
  • Ambrus A, Yang YZ. 2016. Global harmonization of maximum residue limits for pesticides. J Agric Food Chem. 64:30–35. doi:10.1021/jf505347z.
  • Azad T, Ahmed S. 2016. Common milk adulteration and their detection techniques. Int J Food Contam. 3:22. doi:10.1186/s40550-016-0045-3.
  • Bhand S, Mishra GK. 2017. Electrochemical quartz crystal nanobalance (EQCN) based biosensor for sensitive detection of antibiotic residues in milk. In: Biosensors and biodetection: methods and protocols, volume 2: electrochemical, bioelectronic, piezoelectric, cellular and molecular biosensors, methods in molecular biology. New York (NY): Humana Press. p. 263–276.
  • Cacciatore G, Petz M, Rachid S, Hakenbeck R, Bergwerff AA. 2004. Development of an optical biosensor assay for detection of b-lactam antibiotics in milk using the penicillin-binding protein 2x*. Anal Chim Acta. 520:105–115. doi:10.1016/j.aca.2004.06.060.
  • Campanella L, Eremin S, Lelo D, Martini E, Tomassetti M. 2011. Reliable new immunosensor for atrazine pesticide analysis. Sens Actuators B. 156:50–62. doi:10.1016/j.snb.2011.03.072.
  • Chen W, Huang Z, Hu S, Peng J, Liu D, Xiong Y, Xu H, Wei H, Lai W. 2019. Invited review: advancements in lateral flow immunoassays for screening hazardous substances in milk and milk powder. J Dairy Sci. 102:1887–1900. doi:10.3168/jds.2018-15462.
  • Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. 2016. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed. 55:9993–9996. doi:10.1002/anie.201604892.
  • Chen Y, Xianyu Y, Wu J, Zheng W, Rao J, Jiang X. 2016. Point-of-care detection of β-lactamase in milk with a universal fluorogenic probe. Anal Chem. 88:5605–5609. doi:10.1021/acs.analchem.6b01122.
  • Cheng J-Y. 2018. Convenient detection of food toxicants using microbial whole-cell biosensing. Austin JBiosens Bioelectron. 4:1030.
  • Claycomb RW, Delwiche MJ, Munro CJ, BonDurant RH. 1998. Rapid enzyme immunoassay for measurement of bovine progesterone. Biosens Bioelectron. 13: 1165–1171.
  • Collier RJ, Miller M, Hildebrandt J, Torkelson A, White T, Madsen K, Vicini J, Eppard P, Lanza G. 1991. Factors affecting insulin-like growth factor-I concentration in bovine milk. JDairy Sci. 74:2905–2911. doi:10.3168/jds.S0022-0302(91)78473-7.
  • Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 11:315–335. doi:10.2174/1570159X11311030006.
  • Conzuelo F, Gamella M, Campuzano S, Reviejo AJ, Pingarrón JM. 2012. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal Chim Acta. 737:29–36. doi:10.1016/j.aca.2012.05.051.
  • Daems D, Lu J, Delport F, Mariën N, Orbie L, Aernouts B, Adriaens I, Huybrechts T, Saeys W, Spasic D, et al. 2017. Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal Chim Acta. 950:1–6.
  • Damborsky P, Svitel J, Katrlik J. 2016. Optical biosensors. Essays Biochem. 60:91–100. doi:10.1042/EBC20150010.
  • Delwiche M, Tang X, BonDurant R, Munro C. 2001. Improved biosensor for measurement of progesterone in bovine milk. Trans ASAE. 44:1997–2002.
  • [EC] European Commission. 1990. Community procedure for the establishment of maximum residual limits of veterinary medicinal products in foodstuffs of animal origin. In: 2377/90: Off. J. Eur. Commun p. L224:221–228.
  • [EC] European Commission. 2010. Commission regulation (EU) No 165/2010. Off J Eur Union. 50:8–12.
  • Dong -X-X, Yuan L-P, Liu Y-X, Wu M-F, Liu B, Sun Y-M, Shen Y-D, Xu Z-L. 2017. Development of a progesterone immunosensor based on thionine-graphene oxide composites platforms: improvement by biotin-streptavidin-amplified system. Talanta. 170: 502–508.
  • El-Moghazy AY, Zhao C, Istamboulie G, Amaly N, Si Y, Noguer T, Sun G. 2018. Ultrasensitive label-free electrochemical immunosensor based on PVA-co-PE nanofibrous membrane for the detection of chloramphenicol residues in milk. Biosens Bioelectron. 117:838–844. doi:10.1016/j.bios.2018.07.025.
  • Ezhilan M, Gumpu MB, Ramachandra BL, Nesakumar N, Babu KJ, Krishnan UM, Rayappan JBB. 2017. Design and development of electrochemical biosensor for the simultaneous detection of melamine and urea in adulterated milk samples. Sens Actuators B. 238: 1283–1292.
  • Fernandez F, Pinacho DG, Sanchez-Baeza F, Marco MP. 2011. Portable surface plasmon resonance immunosensor for the detection of fluoroquinolone antibiotic residues in milk. J Agric Food Chem. 59:5036–5043. doi:10.1021/jf1048035.
  • Filazi A, Sireli U, Ekici H, Can H, Karagoz A. 2012. Determination of melamine in milk and dairy products by high performance liquid chromatography. JDairy Sci. 95:602–608. doi:10.3168/jds.2011-4926.
  • Gillis EH, Gosling JP, Sreenan JM, Kane M. 2002. Development and validation of a biosensor-based immunoassay for progesterone in bovine milk. J Immunol Methods. 267:131–138. doi:10.1016/S0022-1759(02)00166-7.
  • Giovanni SD, Zambrini V, Varriale A, D’Auria S. 2019. sweet sensor for the detection of aflatoxin M1 in whole milk. ACS Omega. 4:12803–12807. doi:10.1021/acsomega.9b01300.
  • Grout L, Baker MG, French N, Hales S. 2020. A review of potential public health impacts associated with the global dairy sector. GeoHealth. 4:e2019GH000213. doi:10.1029/2019GH000213.
  • Guidi A, Laricchia-Robbio L, Gianfaldoni D, Revoltella R, Bono GD. 2001. Comparison of a conventional immunoassay (ELISA) with a surface plasmon resonance-based biosensor for IGF-1 detection in cows’ milk. Biosens Bioelectron. 16:971–977. doi:10.1016/S0956-5663(01)00245-7.
  • Guo H, Zhou X, Zhang Y, Song B, Zhang J, Shi H. 2016. Highly sensitive and simultaneous detection of melamine and aflatoxin M1 in milk products by multiplexed planar waveguide fluorescence immunosensor (MPWFI). Food Chem.197: 359–366.
  • Gurban A-M, Epure P, Oancea F, Doni M. 2017. Achievements and prospects in electrochemical-based biosensing platforms for aflatoxin M1 detection in milk and dairy products. Sensors. 17:2951.
  • Hoffmann B, Hamburger R, Hollwich W. 1977. Determination of progesterone directly in milk fat as an improved method for fertility control in cattle. Zuchthygiene. 12: 1.
  • Jayalakshmi K, Paramasivam M, Sasikala M, Tamilam T, Sumithra A. 2017. Review on antibiotic residues in animal products and its impact on environments and human health. J Entomol Zool Stud. 5:1446–1451.
  • Jiang Y, Colazo MG, Serpe MJ. 2018. Poly(N-isopropylacrylamide) microgel-based etalons for the label-free quantitation of estradiol-17β in aqueous solutions and milk samples. Anal Bioanal Chem. 410:4397–4407. doi:10.1007/s00216-018-1095-6.
  • Knecht BG, Strasser A, Dietrich R, Martlbauer E, Niessner R, Weller MG. 2004. Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem. 76:646–654. doi:10.1021/ac035028i.
  • Kordasht HK, Moosavy M-H, Hasanzadeh M, Soleymani J, Mokhtarzadeh A. 2019. Determination of aflatoxin M1 using an aptamer based biosensor immobilized on the surface of dendritic fibrous nano-silica functionalized by amine groups. Anal Methods. 11:3910–3919. doi:10.1039/C9AY01185D.
  • Kumar VS, Rajan C, Divya P, Sasikumar S. 2018. Adverse effects on consumer’s health caused by hormones administered in cattle. Int Food Res J. 25:1–10.
  • Lai LMH, Goon IY, Chuah K, Lim M, Braet F, Amal R, Gooding JJ. 2012. The biochemiresistor: an ultrasensitive biosensor for small organic molecules. Angew Chem Int Ed. 51:6456–6459. doi:10.1002/anie.201202350.
  • Li F, Guo Y, Wang X, Sun X. 2018. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk. Biosens Bioelectron. 115:7–13. doi:10.1016/j.bios.2018.04.024.
  • Li H, Xu B, Wang D, Zhou Y, Zhang H, Xia W, Xu S, Li Y. 2015. Immunosensor for trace penicillin G detection in milk based on supported bilayer lipid membrane modified with gold nanoparticles. J Biotechnol. 203:97–103. doi:10.1016/j.jbiotec.2015.03.013.
  • Li Y, Wang Z, Sun L, Liu L, Xu C, Kuang H. 2019. Nanoparticle-based sensors for food contaminants. Trends Anal Chem. 113:74–83. doi:10.1016/j.trac.2019.01.012.
  • Liu N, Han J, Liu Z, Qu L, Gao Z. 2013. Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance. Anal Methods. 4:4442–4447. doi:10.1039/c3ay40697k.
  • Liu Q, Mu H, Sun C, Duan J. 2016. Highly specific determination of gentamicin by induced collapse of Au–lipid capsules. RSC Adv. 6:14483–14489. doi:10.1039/C5RA21752K.
  • Liu Y, Todd EE, Zhang Q, Shi J-R, Liu X-J. 2012. Recent developments in the detection of melamine. J Zhejiang Univ Sci B. 13:525–532. doi:10.1631/jzus.B1100389.
  • Malekinejad H, Rezabakhsh A. 2015a. Hormones in dairy foods and their impact on public health- a narrative review article. Iran J Public Health. 44:742–758.
  • Malekinejad H, Rezabakhsh A. 2015b. Hormones in dairy foods and their impact on public health-A narrative review article. Iran J Public Health. 44:742.
  • Matabaro E, Ishimwe N, Uwimbabazi E, Lee BH. 2017. Current immunoassay methods for the rapid detection of aflatoxin in milk and dairy products. Compr Rev Food Sci Food Saf. 16:808–820. doi:10.1111/1541-4337.12287.
  • Mehrotra P. 2016. Biosensors and their applications–A review. J Oral Biol Craniofacial Res. 6:153–159. doi:10.1016/j.jobcr.2015.12.002.
  • Meshram BD, Agrawal AK, Adil S, Ranvir S, Sande KK. 2018. Biosensor and its application in food and dairy industry: a review. Int J Curr Microbiol Appl Sci. 7:3305–3324. doi:10.20546/ijcmas.2018.702.397.
  • M-Heel B, Savoy-Perroud M-C, Diserens J-M. 2007. Validation and comparison of the copan milk test and delvotest SP-NT for the detection of antimicrobials in milk. Anal Chim Acta. 586:280–283. doi:10.1016/j.aca.2006.11.060.
  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R, Kushwah BS. 2010. Synthesis of gold nanoparticles by leaves of zero-calorie sweetener herb (Stevia rebaudiana) and their nanoscopic characterization by spectroscopy and microscopy. Int J Green Nanotechnol. 1:118–124.
  • Mishra GK, Mishra RK, Bhand S. 2010. Flow injection analysis biosensor for urea analysis in adulterated milk using enzyme thermistor. Biosens Bioelectron. 26:1560–1564. doi:10.1016/j.bios.2010.07.113.
  • Özdemir C, Özdemir S, Oz E, Oz F. 2019. Determination of organochlorine pesticide residues in pasteurized and sterilized milk using QuEChERS sample preparation followed by gas chromatography–mass spectrometry. JFood Process Preserv. 43:e14173. doi:10.1111/jfpp.14173.
  • Mishra RK, Dominguez RB, Bhad S, Munoz R, Marty J-L. 2012. A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosens Bioelectron. 32:56–61. doi:10.1016/j.bios.2011.11.028.
  • Mohsenzadeh MS, Mohammadinejad A, Mohajeri SA. 2018. Simple and selective analysis of different antibiotics in milk using molecularly imprinted polymers: a review. Food Addit Contam. 35:1959–1974. doi:10.1080/19440049.2018.1508889.
  • Moore JC, DeVries JW, Lipp M, Griffiths JC, Abernethy DR. 2010. Total protein methods and their potential utility to reduce the risk of food protein adulteration. Compr Rev Food Sci Food Saf. 9:330–357. doi:10.1111/j.1541-4337.2010.00114.x.
  • Mottram T, Velasco-Garcia M, Berry P, Richards P, Ghesquiere J, Masson L. 2002. Automatic on-line analysis of milk constituents (Urea, Ketones, Enzymes And Hormones) using biosensors. Comp Clin Pathol. 11:50–58. doi:10.1007/s580-002-8082-z.
  • Nameghi MA, Danesh NM, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. 2019. An ultrasensitive electrochemical sensor for 17b-estradiol using split aptamers. Anal Chim Acta. 1065:107–112. doi:10.1016/j.aca.2019.02.062.
  • Ozhikandathil J, Badilescu S, Packirisamy M. 2012. Gold nanoisland structures integrated in a lab-on-a-chip for plasmonic detection of bovine growth hormone. J Biomed Opt. 17. doi:10.1117/1.JBO.17.7.077001.
  • Paniel N, Radoi A, Marty J-L. 2010. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk. Sensors. 10:9439–9448. doi:10.3390/s101009439.
  • Pennacchio A, Varriale A, Esposito MG, Scala A, Marzullo VM, Staiano M, D’Auria S. 2015. A rapid and sensitive assay for the detection of benzylpenicillin (PenG) in milk. PLoS One. 10:e0132396.
  • Pereira AC, Sales MGF, Rodrigues LR. 2019. Biosensors for rapid detection of breast cancer biomarkers. In: Inamuddin, Khan R, Mohammad A, Asiri AM, editors. Advanced biosensors for health care applications. Amsterdam: Elsevier; p. 71–103.
  • Pereira PC. 2014. Milk nutritional composition and its role in human health. Nutrition. 30:619–627. doi:10.1016/j.nut.2013.10.011.
  • Pohanka M. 2018. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials. 11:448.
  • Ramanathan K, Danielsson B. 2001. Principles and applications of thermal biosensors. Biosens Bioelectron. 16:417–423. doi:10.1016/S0956-5663(01)00124-5.
  • Rau S, Gauglitz G. 2012. Reflectometric interference spectroscopy (RIfS) as a new tool to measure in the complex matrix milk at low analyte concentration. Anal Bioanal Chem. 402:529–536. doi:10.1007/s00216-011-5470-9.
  • Renny E, Daniel D, Krastanov A, Zachariah C, Elizabeth R. 2005. Enzyme based sensor for detection of urea in milk. Biotechnol Biotechnol Equip. 19:198–201. doi:10.1080/13102818.2005.10817216.
  • Rosati G, Ravarotto M, Scaramuzza M, Toni AD, Paccagnella A. 2019. Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sens Actuators. 280:280–289. doi:10.1016/j.snb.2018.09.084.
  • Sha R, Komori K, Badhulika S. 2017. Graphene–polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim Acta. 233:44–51. doi:10.1016/j.electacta.2017.03.043.
  • Sharma R, Rajput Y 2012. Detection of adulterants in milk A laboratory manual: NDRI, KARNAL.
  • Silletti S, Rodio G, Pezzotti G, Turemis M, Dragone R, Frazzoli C, Giardi MT. 2015. An optical biosensor based on a multiarray of enzymes for monitoring a large set of chemical classes in milk. Sens Actuators B. 215:607–617. doi:10.1016/j.snb.2015.03.092.
  • Soheili V, Taghdisi SM, Khayyat MH, Bazzaz BSF, Ramezani M, Abnous K. 2016. Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchim Acta. 183:1687–1697. doi:10.1007/s00604-016-1798-3.
  • Sternesjo A, Mellgren C, Bjorck L. 1995. Determination of sulfamethazine residues in milk by a surface plasmon resonance-based biosensor assay. Anal Biochem. 226:175–181. doi:10.1006/abio.1995.1206.
  • Stokes SR, Waldner DN, Jordan ER, Looper ML. 2000. Managing milk composition: normal sources of variation. College Station (TX): AgriLife Extension.
  • Suarez G, Jin Y-H, Auerswald J, Berchtold S, Knapp HF, Diserens J-M, Leterrier Y, Manson J-AE VG. 2009. Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk. Lab Chip. 9:1625–1630. doi:10.1039/b819688e.
  • Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. 2015. ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 63:255–261. doi:10.1016/j.bios.2014.07.049.
  • Thapar P, Malik RK, Salooja MK. 2018. Application of biosensors for detection of contaminants in milk and milk products. ACTA Sci Microbiol. 1:17–24.
  • Thévenot DR, Toth K, Durst RA, Wilson GS. 2001. Electrochemical biosensors: recommended definitions and classification. Anal Lett. 34:635–659. doi:10.1081/AL-100103209.
  • Tomassetti M, Martini E, Campanella L, Facero G, Sanzo G, Mazzei F. 2015. A new surface plasmon resonance immunosensor for triazine pesticide determination in bovine milk: a comparison with conventional amperometric and screen-printed immunodevices. Sensors. 15:10255–10270. doi:10.3390/s150510255.
  • Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A. 2011. Development of a quantum dot-based fluorescent immunoassay for progesterone determination in bovine milk. Biosens Bioelectron. 26:4753–4759. doi:10.1016/j.bios.2011.05.044.
  • Trivedi UB, Lakshminarayana D, Kothari IL, Patel NG, Kapse HN, Makhija KK, Patel PB, Panchal CJ. 2009. Potentiometric biosensor for urea determination in milk. Sens Actuators. 140:260–266. doi:10.1016/j.snb.2009.04.022.
  • Tschmelak J, Kappel N, Gauglitz G. 2005. TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water. Anal Bioanal Chem. 382:1895–1903.
  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci.112:5649–5654.
  • Verma N, Bhardwaj A. 2015. Biosensor technology for pesticides-a review. Appl Biochem Biotechnol. 175:3093–3119. doi:10.1007/s12010-015-1489-2.
  • Wang JJ, Liu BH, Hsu YT, Yu FY. 2011. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control. 22:964–969. doi:10.1016/j.foodcont.2010.12.003.
  • Wang Y, Dostálek J, Knoll W. 2009. Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk. Biosens Bioelectron. 24:2264–2267.
  • Wang Y, Partridge A, Wu Y. 2019. Improving nanoparticle-enhanced surface plasmon resonance detection of small molecules by reducing steric hindrance via molecular linkers. Talanta. 198:350–357. doi:10.1016/j.talanta.2019.02.035.
  • Wu Y, Tang L, Huang L, Han Z, JianWang PH. 2014. A low detection limit penicillin biosensor based on single graphene nanosheets preadsorbed with hematein/ionic liquids/penicillinase. Mater Sci Eng C. 39:92–99. doi:10.1016/j.msec.2014.02.012.
  • Xiao H, Liu H, Yin J, Wu L, Lu B, Li J, Zhen Z. 2015. Determination of 7 penicilins and penicilloic acids in milk products by high performance liquid chromatography-tandem mass spectrometry. Wei Sheng Yan Jiu= J Hyg Res. 44:641–646.
  • Yehia AM, Arafa RM, Abbas SS, Amer SM. 2016. Stability study and kinetic monitoring of cefquinome sulfate using cyclodextrin-based ion-selective electrode: application to biological samples. J AOAC Int. 99:73–81. doi:10.5740/jaoacint.15-0185.
  • Yulaev M, Sitdikov R, Dmitrieva N, Yazynina E, Zherdev A, Dzantiev B. 2001. Development of a potentiometric immunosensor for herbicide simazine and its application for food testing. Sens Actuators B. 75:129–135. doi:10.1016/S0925-4005(01)00551-2.
  • Zacco E, Adrian J, Galve R, Marco M-P, Alegret S, Pividori MI. 2007. Electrochemical magneto immunosensing of antibiotic residues in milk. Biosens Bioelectron. 22:2184–2191. doi:10.1016/j.bios.2006.10.014.
  • Zhang Y, Myench SB, Schulze H, Perz R, Yang B, Schmid RD, Bachmann TT. 2005. Disposable biosensor test for organophosphate and carbamate insecticides in milk. J Agric Food Chem. 53:5110–5115. doi:10.1021/jf050302q.
  • Zhou S, Zhao Y, Mecklenburg M, Yang D, Xie B. 2013. A novel thermometric biosensor for fast surveillance of β-lactamase activity in milk. Biosens Bioelectron. 49:99–104. doi:10.1016/j.bios.2013.05.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.