370
Views
0
CrossRef citations to date
0
Altmetric
Articles

Establishment of a dual-aptasensor for simultaneous detection of chloramphenicol and kanamycin

, , &
Pages 1148-1156 | Received 03 Feb 2021, Accepted 27 Mar 2021, Published online: 18 May 2021

References

  • Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. 2020. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr. 60(7):1195–1206. doi:10.1080/10408398.2018.1564234.
  • Akki SU, Werth CJ. 2018. Critical review: DNA aptasensors, are they ready for monitoring organic pollutants in natural and treated water sources? Environ Sci Technol. 52(16):8989–9007. doi:10.1021/acs.est.8b00558.
  • Alam P, Iqbal M, Ezzeldin E, Khalil NY, Foudah AI, Alqarni MH, Shakeel F. 2020. Simple and accurate HPTLC-densitometric method for quantification of delafloxacin (a novel fluoroquinolone antibiotic) in plasma samples: application to pharmacokinetic study in rats. Antibiotics (Basel). 9(3):134. doi:10.3390/antibiotics9030134.
  • Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Coors A, Finley R, Gaze WH, Heberer T, et al. 2013. Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ Health Persp. 121(9):993–1001. doi:10.1289/ehp.1206316.
  • Canoura J, Wang Z, Yu H, Alkhamis O, Fu F, Xiao Y. 2018. No structure-switching required: a generalizable exonuclease-mediated aptamer-based assay for small-molecule detection. J Am Chem Soc. 140(31):9961–9971. doi:10.1021/jacs.8b04975.
  • Chang YM, Donovan MJ, Tan W. 2013. Using aptamers for cancer biomarker discovery. J Nucleic Acids. 2013:817350. doi:10.1155/2013/817350
  • Chen A, Yang S. 2015. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 71:230–242. doi:10.1016/j.bios.2015.04.041
  • Chen C, Zhou S, Cai Y, Tang F. 2017. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol. 1(1):37. doi:10.1038/s41698-017-0041-y.
  • Dong Y, Xu Y, Yong W, Chu X, Wang D. 2014. Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr. 54(12):1548–1561. doi:10.1080/10408398.2011.642905.
  • Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM. 2016. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem. 190:115–121. doi:10.1016/j.foodchem.2015.05.079
  • Gallagher T, Riedel S, Kapcia J, Caverly LJ, Carmody L, Kalikin LM, Lu J, Phan J, Gargus M, Kagawa M, et al. 2021. Liquid chromatography mass spectrometry detection of antibiotic agents in sputum from persons with cystic fibrosis. Antimicrob Agents Chemother. 65(2):e00927–20. doi:10.1128/AAC.00927-20.
  • Gaze WH, Zhang L, Abdouslam NA, Hawkey PM, Calvo-Bado L, Royle J, Brown H, Davis S, Kay P, Boxall AB, et al. 2011. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. Isme J. 5(8):1253–1261. doi:10.1038/ismej.2011.15.
  • Hermann CA, Duerkop A, Baeumner AJ. 2019. Food safety analysis enabled through biological and synthetic materials: a critical review of current trends. Anal Chem. 91(1):569–587. doi:10.1021/acs.analchem.8b04598.
  • Liang S, Kinghorn AB, Voliotis M, Prague JK, Veldhuis JD, Tsaneva-Atanasova K, McArdle CA, Li RHW, Cass AEG, Dhillo WS, et al. 2019. Measuring luteinising hormone pulsatility with a robotic aptamer-enabled electrochemical reader. Nat Commun. 10:852. doi:10.1038/s41467-019-08799-6
  • Ma Q, Wang Y, Jia J, Xiang Y. 2018. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chem. 249:98–103. doi:10.1016/j.foodchem.2018.01.022
  • Mehta J, Van Dorst B, Rouah-Martin E, Herrebout W, Scippo ML, Blust R, Robbens J. 2011. In vitro selection and characterization of DNA aptamers recognizing chloramphenicol. J Biotechnol. 155(4):361–369. doi:10.1016/j.jbiotec.2011.06.043.
  • Owen L, White AW, Laird K. 2019. Characterisation and screening of antimicrobial essential oil components against clinically important antibiotic-resistant bacteria using thin layer chromatography-direct bioautography hyphenated with GC-MS, LC-MS and NMR. Phytochem Anal. 30(2):121–131. doi:10.1002/pca.2797.
  • Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, et al. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio. 3(1):2. doi:10.1128/mBio.00305-11.
  • Que X, Tang D, Xia B, Lu M, Tang D. 2014. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue. Anal Chim Acta. 830:42–48. doi:10.1016/j.aca.2014.04.051
  • Ravikumar A, Panneerselvam P. 2019. A novel fluorescent sensing platform based on metal-polydopamine frameworks for the dual detection of kanamycin and oxytetracycline. Analyst. 144(7):2337–2344. doi:10.1039/c8an02363h.
  • Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C. 2011. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem. 415 (2):175–181. doi:10.1016/j.ab.2011.04.007
  • Wang T, Qi D, Yang H, Liu Z, Wang M, Leow WR, Chen G, Yu J, He K, Cheng H, et al. 2019. Tactile chemomechanical transduction based on an elastic microstructured array to enhance the sensitivity of portable biosensors. Adv Mater. 31(1):e1803883. doi:10.1002/adma.201803883.
  • Wang X, Li J, Jian D, Zhang Y, Shan Y, Wang S, Liu F. 2020. Paper-based antibiotic sensor (PAS) relying on colorimetric indirect competitive enzyme-linked immunosorbent assay for quantitative tetracycline and chloramphenicol detection. Sensor Actuat B-Chem. 329:129173. doi:10.1016/j.snb.2020.129173
  • Wang Y, Gan N, Zhou Y, Li T, Hu F, Cao Y, Chen Y. 2017. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron. 97:100–106. doi:10.1016/j.bios.2017.05.017
  • Wei Y, Zhang J, Wang X, Duan Y. 2015. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 65:16–22. doi:10.1016/j.bios.2014.09.100
  • Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, et al. 2013. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis. 13(2):155–165. doi:10.1016/S1473-3099(12)70317-1.
  • Zeng R, Su L, Luo Z, Zhang L, Lu M, Tang D. 2018. Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Anal Chim Acta. 1038:21–28. doi:10.1016/j.aca.2018.07.010
  • Zeng R, Tang Y, Zhang L, Luo Z, Tang D. 2018. Dual-readout aptasensing of antibiotic residues based on gold nanocluster-functionalized MnO2 nanosheets with target-induced etching reaction. J Mater Chem B. 6(48):8071–8077. doi:10.1039/c8tb02642d.
  • Zeng R, Zhang L, Luo Z, Tang D. 2019. Palindromic fragment-mediated single-chain amplification: an innovative mode for photoelectrochemical bioassay. Anal Chem. 91(12):7835–7841. doi:10.1021/acs.analchem.9b01557.
  • Zeng R, Zhang L, Su L, Luo Z, Zhou Q, Tang D. 2019. Photoelectrochemical bioanalysis of antibiotics on rGO-Bi2WO6-Au based on branched hybridization chain reaction. Biosens Bioelectron. 133:100–106. doi:10.1016/j.bios.2019.02.067
  • Zhou L, Gan N, Hu F, Li TH, Cao Y, Wu D. 2018. Microchip electrophoresis array-based aptasensor for multiplex antibiotic detection using functionalized magnetic beads and polymerase chain reaction amplification. Sensor Actuat B-Chem. 263:568–574. doi:10.1016/j.snb.2018.02.136

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.