179
Views
0
CrossRef citations to date
0
Altmetric
Articles

Eco-friendly ‘ochratoxin A’ control in stored licorice roots – quality assurance perspective

, , , &
Pages 1321-1336 | Received 01 Apr 2022, Accepted 26 Apr 2022, Published online: 20 May 2022

References

  • Aara A, Chappidi V, Ramadas MN. 2020. Antioxidant activity of eugenol in Piper betel leaf extract. J Family Med Prim Care. 9(1):327–331.
  • Abarca M, Bragulat MR, Castellá G, Cabañes F. 2019. Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. Int J Food Microbiol. 291:10–16.
  • Abd-Elsalam KA, Khokhlov AR. 2015. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci. 5(2):255–265. doi:https://doi.org/10.1007/s13204-014-0398-y
  • Abedi E, Mousavifard M, Hashemi SMB. 2022. Ultrasound-assisted detoxification of ochratoxin A: comparative study of cell wall structure, hydrophobicity, and toxin binding capacity of single and co-culture lactic acid bacteria. Food Bioprocess Technol. 15(3):539–560. doi:https://doi.org/10.1007/s11947-022-02767-7
  • Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O. 2017. Nanoemulsions as edible coatings. Curr Opin Food Sci. 15:43–49. doi:https://doi.org/10.1016/j.cofs.2017.06.002
  • Adams RP. 2007. Identification of essential oil components by gas chromatography. Mass Spectroscopy. Illinois: Allured Publishing Corporation.
  • Aguilar K, Garvín A, Azuara E, Ibarz A. 2016. Rate-controlling mechanisms in the photo-degradation of 5-hydroxymethylfurfural. Food Bioprocess Technol. 9(8):1399–1407. doi:https://doi.org/10.1007/s11947-016-1729-7
  • Alghaith AF, Alshehri S, Alhakamy NA, Hosny KM. 2021. Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea. Drug Deliv. 28(1):343–356.
  • Amjadi S, Almasi H, Ghadertaj A, Mehryar L. 2021. Whey protein isolate‐based films incorporated with nanoemulsions of orange peel (Citrus sinensis) essential oil: preparation and characterization. J Food Process Preserv. 45(2):e15196. doi:https://doi.org/10.1111/jfpp.15196
  • Arora A, Kumar S, Ali J, Baboota S. 2020. Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: pharmacokinetic and brain delivery study. Chem Phys Lipids. 230:104917.
  • Aswathanarayan JB, Vittal RR. 2019. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst. 3:95. doi:https://doi.org/10.3389/fsufs.2019.00095
  • Barzegar H, Mehrnia MA, Nasehi B, Alipour M. 2018. Fabrication of peppermint essential oil nanoemulsions by spontaneous method: effect of preparing conditions on droplet size. Flavour Fragr J. 33(5):351–356. doi:https://doi.org/10.1002/ffj.3455
  • Basak S. 2018. Modelling the effect of betel leaf essential oil on germination time of Aspergillus flavus and Penicillium expansum spore population. LWT. 95:361–366. doi:https://doi.org/10.1016/j.lwt.2018.05.015
  • Batiha GE-S, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. 2020. Syzygium aromaticum L. (Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules. 10(2):202. doi:https://doi.org/10.3390/biom10020202
  • Belasli A, Ben Miri Y, Aboudaou M, Aït Ouahioune L, Montañes L, Ariño A, Djenane D. 2020. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): potential use as wheat preservative. Food Sci Nutr. 8(9):4717–4729. doi:https://doi.org/10.1002/fsn3.1650
  • Bhavya ML, Shewale SR, Rajoriya D, Hebbar HU. 2021. Impact of blue LED illumination and natural photosensitizer on bacterial pathogens, enzyme activity and quality attributes of fresh-cut pineapple slices. Food Bioprocess Technol. 14(2):362–372. doi:https://doi.org/10.1007/s11947-021-02581-7
  • Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N. 2019. Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric. 99(4):1457–1474.
  • Bounar R, Krimat S, Boureghda H, Dob T. 2020. Chemical analyses, antioxidant and antifungal effects of oregano and thyme essential oils alone or in combination against selected Fusarium species. Int Food Res J. 27(1):66–77.
  • Bowker JD, Trushenski JT, Wandelear N, Bowman MP. 2017. Safety of AQUI-S 20E (10% eugenol) as a sedative for freshwater fish. Trans Am Fish Soc. 146(3):384–394. doi:https://doi.org/10.1080/00028487.2017.1281170
  • Campaniello D, Corbo MR, Sinigaglia M. 2010. Antifungal activity of eugenol against Penicillium, Aspergillus, and Fusarium species. J Food Prot. 73(6):1124–1128.
  • Carr DS, Harris BL. 1949. Solutions for maintaining constant relative humidity. Ind Eng Chem. 41(9):2014–2015. doi:https://doi.org/10.1021/ie50477a042
  • Carrasco H, Raimondi M, Svetaz L, Liberto MD, Rodriguez MV, Espinoza L, Madrid A, Zacchino S. 2012. Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules. 17(1):1002–1024.
  • Cenobio-Galindo AdJ, Ocampo-López J, Reyes-Munguía A, Carrillo-Inungaray ML, Cawood M, Medina-Pérez G, Fernández-Luqueño F, Campos-Montiel RG. 2019. Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: antioxidant activity, physicochemical changes and structural evaluation. Antioxidants. 8(10):500. doi:https://doi.org/10.3390/antiox8100500
  • Chen C, Cai N, Chen J, Wan C. 2019. Clove essential oil as an alternative approach to control postharvest blue mold caused by Penicillium italicum in citrus fruit. Biomolecules. 9(5):197. doi:https://doi.org/10.3390/biom9050197
  • Chibane E, Essarioui A, Ouknin M, Boumezzourh A, Bouyanzer A, Majidi L. 2020. Antifungal activity of Asteriscus graveolens (Forssk.) less essential oil against Fusarium oxysporum f. sp. albedinis, the causal agent of “Bayoud” disease on date palm. Moroccan J Chem. 8(2):2456–2465.
  • Chidi F, Bouhoudan A, Khaddor M. 2020. Antifungal effect of the tea tree essential oil (Melaleuca alternifolia) against Penicillium griseofulvum and Penicillium verrucosum. J King Saud Univ-Sci. 32(3):2041–2045. doi:https://doi.org/10.1016/j.jksus.2020.02.012
  • Choonharuangdej S, Srithavaj T, Thummawanit S. 2021. Fungicidal and inhibitory efficacy of cinnamon and lemongrass essential oils on Candida albicans biofilm established on acrylic resin: an in vitro study. J Prosth Dent. 125(4):701–706. doi:https://doi.org/10.1016/j.prosdent.2020.12.017
  • da Cruz Cabral L, Pinto VF, Patriarca A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol. 166(1):1–14.
  • da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BAd, Machinski M. 2020. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Add Contam. 37(1):153–161. doi:https://doi.org/10.1080/19440049.2019.1678771
  • da Silva Gündel S, de Godoi SN, Santos RCV, da Silva JT, de Menezes Leite LB, Amaral AC, Ourique AF. 2020. In vivo antifungal activity of nanoemulsions containing eucalyptus or lemongrass essential oils in murine model of vulvovaginal candidiasis. J Drug Delivery Sci Technol. 57:101762. doi:https://doi.org/10.1016/j.jddst.2020.101762
  • Das S, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. 2021. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of aflatoxin B1 synthesizing genes based on molecular docking. Carbohydr Polym. 255:117339.
  • Davies CR, Wohlgemuth F, Young T, Violet J, Dickinson M, Sanders J-W, Vallieres C, Avery SV. 2021. Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biol Rev. 36:15–26.
  • de Oliveira Pereira F, Mendes JM, de Oliveira Lima E. 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med Mycol. 51(5):507–513.
  • Delshadi R, Bahrami A, Tafti AG, Barba FJ, Williams LL. 2020. Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends Food Sci Technol. 104:72–83. doi:https://doi.org/10.1016/j.tifs.2020.07.004
  • Dong LM, Thuy DTK. 2021. Evaluation of the synergistic effect of ethanol and lemongrass oil against Aspergillus niger. J Microbiol Biotechnol Food Sci. 2021:1312–1316.
  • El-Samawaty AE-RM, El-Wakil DA, Alamery S, Mahmoud MM. 2021. Potency of plant extracts against Penicillium species isolated from different seeds and fruits in Saudi Arabia. Saudi J Biol Sci. 28(6):3294–3302. doi:https://doi.org/10.1016/j.sjbs.2021.02.074
  • Falleh H, Jemaa MB, Saada M, Ksouri R. 2020. Essential oils: a promising eco-friendly food preservative. Food Chem. 330:127268. doi:https://doi.org/10.1016/j.foodchem.2020.127268
  • Farbo MG, Urgeghe PP, Fiori S, Marcello A, Oggiano S, Balmas V, Hassan ZU, Jaoua S, Migheli Q. 2018. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. Int J Food Microbiol. 284:1–10. doi:https://doi.org/10.1016/j.ijfoodmicro.2018.06.023
  • Feng T, Hu Z, Wang K, Zhu X, Chen D, Zhuang H, Yao L, Song S, Wang H, Sun M. 2020. Emulsion-based delivery systems for curcumin: encapsulation and interaction mechanism between debranched starch and curcumin. Int J Biol Macromol. 161:746–754. doi:https://doi.org/10.1016/j.ijbiomac.2020.06.088
  • Gharibzahedi SM, Jafari SM. 2018. Fabrication of nanoemulsions by ultrasonication. In: Nanoemulsions. Amsterdam (The Netherlands): Elsevier; p. 233–285.
  • Ghasemi G, Alirezalu A, Ghosta Y, Jarrahi A, Safavi SA, Abbas-Mohammadi M, Barba FJ, Munekata PE, Domínguez R, Lorenzo JM. 2020. Composition, antifungal, phytotoxic, and insecticidal activities of thymus kotschyanus essential oil. Molecules. 25(5):1152. doi:https://doi.org/10.3390/molecules25051152
  • Guimarães A, Ramos Ó, Cerqueira M, Venâncio A, Abrunhosa L. 2020. Active whey protein edible films and coatings incorporating Lactobacillus buchneri for Penicillium nordicum control in cheese. Food Bioprocess Technol. 13(6):1074–1086. doi:https://doi.org/10.1007/s11947-020-02465-2
  • Gutiérrez-Jara C, Bilbao-Sainz C, McHugh T, Chiou B-S, Williams T, Villalobos-Carvajal R. 2021. Effect of cross-linked alginate/oil nanoemulsion coating on cracking and quality parameters of sweet cherries. Foods. 10(2):449. doi:https://doi.org/10.3390/foods10020449
  • Hadi A, Al Hussaini IM, Al-Janabi JKA. 2021. Occurrence, characterizations of ochratoxin a and molecular identification of Aspergillus ochraceous contaminating dried fruits. Ann Romanian Soc Cell Biol. 25(4):13811–13826.
  • Haghighi TM, Saharkhiz MJ, Khosravi AR, Fard FR, Moein M. 2017. Essential oil content and composition of Vitex pseudo-negundo in Iran varies with ecotype and plant organ. Ind Crops Prod. 109:53–59. doi:https://doi.org/10.1016/j.indcrop.2017.08.007
  • Haghighi TM, Saharkhiz MJ, Naddaf F. 2019. Ontogenetic variability of Vitex pseudo-negundo essential oil and its phytotoxic activity. Sci Hortic. 257:108735. doi:https://doi.org/10.1016/j.scienta.2019.108735
  • Han B, Fang C, Sha L, Jalalah M, Al-Assiri M, Harraz FA, Cao Y. 2021. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A. Food Chem. 338:127827.
  • Hazrati H, Saharkhiz MJ, Niakousari M, Moein M. 2017. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf. 142:423–430.
  • Hua J, Björling M, Larsson R, Shi Y. 2020. Controllable friction of green ionic liquids via environmental humidity. Adv Eng Mater. 22(5):1901253. doi:https://doi.org/10.1002/adem.201901253
  • Huang K, Liu R, Zhang Y, Guan X. 2021. Characteristics of two cedarwood essential oil emulsions and their antioxidant and antibacterial activities. Food Chem. 346:128970.
  • Jain N, Sharma M. 2020. Inhibitory effect of some selected essential oil terpenes on fungi causing superficial infection in human beings. J Essential Oil Bearing Plants. 23(4):862–869. doi:https://doi.org/10.1080/0972060X.2020.1824686
  • Jampílek J, Kráľová K, Campos EV, Fraceto LF. 2019. Bio-based nanoemulsion formulations applicable in agriculture, medicine, and food industry. In: Nanobiotechnology in bioformulations. New York (NY): Springer; p. 33–84.
  • Jayashree T, Subramanyam C. 1999. Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett Appl Microbiol. 28(3):179–183.
  • Jeanneau C, Giraud T, Milan J-L, About I. 2020. Investigating unset endodontic sealers’ eugenol and hydrocortisone roles in modulating the initial steps of inflammation. Clin Oral Invest. 24(2):639–647. doi:https://doi.org/10.1007/s00784-019-02957-2
  • Jin H, Liu C, Zhang S, Guo Z, Li J, Zhao Q, Zhang Y, Xu J. 2020. Comparison of protein hydrolysates against their native counterparts in terms of structural and antioxidant properties, and when used as emulsifiers for curcumin nanoemulsions. Food Funct. 11(11):10205–10218. doi:https://doi.org/10.1039/d0fo01830a
  • Juan-García A, Carbone S, Ben-Mahmoud M, Sagratini G, Mañes J. 2020. Beauvericin and ochratoxin A mycotoxins individually and combined in HepG2 cells alter lipid peroxidation, levels of reactive oxygen species and glutathione. Food Chem Toxicol. 139:111247.
  • Kalagatur NK, Nirmal Ghosh OS, Sundararaj N, Mudili V. 2018. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogon martinii essential oil on plant pathogenic fungi Fusarium graminearum. Front Pharmacol. 9:610.
  • Khalesi M, Khatib N. 2011. The effects of different ecophysiological factors on ochratoxin A production. Environ Toxicol Pharmacol. 32(2):113–121.
  • Khalesi M, Sheikh-Zeinoddin M, Tabrizchi M. 2011. Determination of ochratoxin A in licorice root using inverse ion mobility spectrometry. Talanta. 83(3):988–993.
  • Khalesi M, Tabrizchi M, Sheikh-Zeinoddin M. 2013. The effects of temperature and relative humidity on ochratoxin A formation in fresh liquorice root. Food Add Contam. 30(2):339–344. doi:https://doi.org/10.1080/19440049.2012.738368
  • Khaneghah AM, Fakhri Y, Gahruie HH, Niakousari M, Sant’Ana AS. 2019. Mycotoxins in cereal-based products during 24 years (1983–2017): a global systematic review. Trends Food Sci Technol. 91:95–105. doi:https://doi.org/10.1016/j.tifs.2019.06.007
  • Khassanov F. 2018. Licorice in Middle Asia. In: Plant and human health. Vol. 1. New York (NY): Springer; p. 757–765.
  • Kumar N, Khurana SP, Pandey VN. 2021. Application of clove and dill oils as an alternative of salphos for chickpea food seed storage. Sci Rep. 11(1):1–10. doi:https://doi.org/10.1038/s41598-021-89936-4
  • Kumar P, Mishra S, Malik A, Satya S. 2014. Preparation and characterization of P EGMentha oil nanoparticles for housefly control. Colloids Surf. B Biointerfaces 116:707–713. doi:https://doi.org/10.1016/j.colsurfb.2013.11.012
  • Laćarac N. 2021. Essential oils and plant extracts in the control of phytopathogenic bacteria and fungi. Biljni Lekar. 49(2):178–187. doi:https://doi.org/10.5937/BiljLek2102178L
  • Lan L, Sun W, Chang Q, Sun G. 2021. Comprehensive evaluation of licorice extract by five-dimensional quantitative profiling. J Chromatogr A. 1644:462105.
  • Lau SK, Subbiah J. 2020. HumidOSH: a self-contained environmental chamber with controls for relative humidity and fan speed. HardwareX. 8:e00141. doi:https://doi.org/10.1016/j.ohx.2020.e00141
  • Leon-Méndez G, Osorio-Fortich M, Ortega-Toro R, Pajaro-Castro N, Torrenegra-Alarcón M, Herrera-Barros A. 2018. Design of an emulgel-type cosmetic with antioxidant activity using active essential oil microcapsules of thyme (Thymus vulgaris L.), cinnamon (Cinnamomum verum J.), and clove (Eugenia caryophyllata T). Int J Polymer Sci. 2018:1–16. doi:https://doi.org/10.1155/2018/2874391
  • Li S, Sun J, Yan J, Zhang S, Shi C, McClements DJ, Liu X, Liu F. 2021. Development of antibacterial nanoemulsions incorporating thyme oil: layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chem. 339:128016. doi:https://doi.org/10.1016/j.foodchem.2020.128016
  • Lone SA, Khan S, Ahmad A. 2020. Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme. Arch Microbiol. 202(4):711–726.
  • Mani López E, Valle Vargas GP, Palou E, López Malo A. 2018. Penicillium expansum inhibition on bread by lemongrass essential oil in vapor phase. J Food Protect. 81(3):467–471. doi:https://doi.org/10.4315/0362-028X.JFP-17-315
  • Martins RC, Lopes VV, Vicente AA, Teixeira JA. 2008. Computational shelf-life dating: complex systems approaches to food quality and safety. Food Bioprocess Technol. 1(3):207–222. doi:https://doi.org/10.1007/s11947-008-0071-0
  • Marvin JW, Kerr RA, McCarty LB, Bridges W, Martin SB, Wells CE. 2020. Curative evaluation of biological control agents and synthetic fungicides for Clarireedia jacksonii. HortScience. 55(10):1622–1625. doi:https://doi.org/10.21273/HORTSCI15088-20
  • McClements DJ. 2012. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 8(6):1719–1729. doi:https://doi.org/10.1039/C2SM06903B
  • Mohammadi L, Ramezanian A, Tanaka F, Tanaka F. 2021. Impact of Aloe vera gel coating enriched with basil (Ocimum basilicum L.) essential oil on postharvest quality of strawberry fruit. Food Measure. 15(1):353–362. doi:https://doi.org/10.1007/s11694-020-00634-7
  • Moretti A, Logrieco AF, Susca A. 2017. Mycotoxins: an underhand food problem. In: Moretti A, Susca A, editors. Mycotoxigenic fungi. New York (NY): Humana Press; p. 3–12.
  • Morkeliūnė A, Rasiukevičiūtė N, Šernaitė L, Valiuškaitė A. 2021. The use of essential oils from thyme, sage and peppermint against Colletotrichum acutatum. Plants. 10(1):114.
  • Nasiri M, Sharifan A, Ahari H, Anvar AA, Kakoolaki S. 2019. Food-grade nanoemulsions and their fabrication methods to increase shelf life. Food Health. 2(2):26–31.
  • Nešić K, Habschied K, Mastanjević K. 2021. Possibilities for the biological control of mycotoxins in food and feed. Toxins. 13(3):198. doi:https://doi.org/10.3390/toxins13030198
  • Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. 2014. Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr. 1:24.
  • Olea AF, Bravo A, Martínez R, Thomas M, Sedan C, Espinoza L, Zambrano E, Carvajal D, Silva-Moreno E, Carrasco H. 2019. Antifungal activity of eugenol derivatives against Botrytis cinerea. Molecules. 24(7):1239. doi:https://doi.org/10.3390/molecules24071239
  • Ota M, Xu F, Li Y-L, Shang M-Y, Makino T, Cai S-Q. 2018. Comparison of chemical constituents among licorice, roasted licorice, and roasted licorice with honey. J Nat Med. 72(1):80–95.
  • Pal N, Mandal A. 2020. Enhanced oil recovery performance of Gemini surfactant-stabilized nanoemulsions functionalized with partially hydrolyzed polymer/silica nanoparticles. Chem Eng Sci. 226:115887. doi:https://doi.org/10.1016/j.ces.2020.115887
  • Pandey AK, Kumar P, Singh P, Tripathi NN, Bajpai VK. 2016. Essential oils: sources of antimicrobials and food preservatives. Front Microbiol. 7:2161.
  • Pavela R, Benelli G. 2016. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21(12):1000–1007.
  • Pavoni L, Maggi F, Mancianti F, Nardoni S, Ebani VV, Cespi M, Bonacucina G, Palmieri GF. 2019. Microemulsions: an effective encapsulation tool to enhance the antimicrobial activity of selected EOs. J Drug Delivery Sci Technol. 53:101101. doi:https://doi.org/10.1016/j.jddst.2019.05.050
  • Peng C, Zhu Y, Yan F, Su Y, Zhu Y, Zhang Z, Zuo C, Wu H, Zhang Y, Kan J, et al. 2021. The difference of origin and extraction method significantly affects the intrinsic quality of licorice: a new method for quality evaluation of homologous materials of medicine and food. Food Chem. 340:127907. doi:https://doi.org/10.1016/j.foodchem.2020.127907
  • Peromingo B, Sulyok M, Lemmens M, Rodríguez A, Rodríguez M. 2019. Diffusion of mycotoxins and secondary metabolites in dry-cured meat products. Food Control. 101:144–150. doi:https://doi.org/10.1016/j.foodcont.2019.02.032
  • Pongsumpun P, Iwamoto S, Siripatrawan U. 2020. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem. 60:104604.
  • Rafiee S, Ramezanian A, Mostowfizadeh-Ghalamfarsa R, Niakousari M, Saharkhiz MJ, Yahia E. 2022. Nano-emulsion of denak (Oliveria decumbens Vent.) essential oil: ultrasonic synthesis and antifungal activity against Penicillium digitatum. J Food Meas Charact. 16:324–331.
  • Ragupathi K, Renganayaki P, Sundareswaran S, Kumar SM, Kamalakannan A. 2020. Evaluation of essential oils against early blight (Alternaria solani) of tomato. Int Res J Pure Appl Chem. 21(24):164–169. doi:https://doi.org/10.9734/irjpac/2020/v21i2430346
  • Rasch C, Kumke M, Löhmannsröben HG. 2010. Sensing of mycotoxin producing fungi in the processing of grains. Food Bioprocess Technol. 3(6):908–916. doi:https://doi.org/10.1007/s11947-010-0364-y
  • Riquelme N, Zúñiga R, Arancibia C. 2019. Physical stability of nanoemulsions with emulsifier mixtures: replacement of tween 80 with quillaja saponin. LWT. 111:760–766. doi:https://doi.org/10.1016/j.lwt.2019.05.067
  • Shalayel MH, Al-Mazaideh GM, Al Swailmi FK, Aladaileh S, Nour S, Afaneh AT, Marashdeh A. 2020. Molecular docking evaluation of Syzygium aromaticum isolated compounds against exo-β-(1, 3)-glucanases of Candida albicans. J Pharma Res Int. 32(46):34–44.
  • Sheikh-Zeinoddin M, Khalesi M. 2019. Biological detoxification of ochratoxin A in plants and plant products. Toxin Rev. 38(3):187–199. doi:https://doi.org/10.1080/15569543.2018.1452264
  • Surh J, Decker EA, McClements DJ. 2017. Utilisation of spontaneous emulsification to fabricate lutein‐loaded nanoemulsion‐based delivery systems: factors influencing particle size and colour. Int J Food Sci Technol. 52(6):1408–1416. doi:https://doi.org/10.1111/ijfs.13395
  • Taban A, Saharkhiz MJ, Kavoosi G. 2021. Development of pre-emergence herbicide based on Arabic gum-gelatin, apple pectin and savory essential oil nano-particles: a potential green alternative to metribuzin. Int J Biol Macromol. 167:756–765.
  • Taban A, Saharkhiz MJ, Khorram M. 2020. Formulation and assessment of nano-encapsulated bioherbicides based on biopolymers and essential oil. Ind Crops Prod. 149:112348. doi:https://doi.org/10.1016/j.indcrop.2020.112348
  • Taban A, Saharkhiz MJ, Naderi R. 2020. A natural post-emergence herbicide based on essential oil encapsulation by cross-linked biopolymers: characterization and herbicidal activity. Environ Sci Pollut Res Int. 27(36):45844–45858.
  • Takahashi H, Nakamura A, Fujino N, Sawaguchi Y, Sato M, Kuda T, Kimura B. 2021. Evaluation of the antibacterial activity of allyl isothiocyanate, clove oil, eugenol and carvacrol against spoilage lactic acid bacteria. LWT. 145:111263. doi:https://doi.org/10.1016/j.lwt.2021.111263
  • Tanapichatsakul C, Khruengsai S, Pripdeevech P. 2020. In vitro and in vivo antifungal activity of Cuminum cyminum essential oil against Aspergillus aculeatus causing bunch rot of postharvest grapes. PLoS One. 15(11):e0242862. doi:https://doi.org/10.1371/journal.pone.0242862
  • Tančinová D, Medo J, Mašková Z, Foltinová D, Árvay J. 2021. Effect of essential oils of Lamiaceae plants on the Penicillium commune. J Microbiol, Biotechnol Food Sci. 2021:1111–1117.
  • Tao N, OuYang Q, Jia L. 2014. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control. 41:116–121. doi:https://doi.org/10.1016/j.foodcont.2014.01.010
  • Tao Y, Xie S, Xu F, Liu A, Wang Y, Chen D, Pan Y, Huang L, Peng D, Wang X, et al. 2018. Ochratoxin A: toxicity, oxidative stress and metabolism. Food Chem Toxicol. 112:320–331. doi:https://doi.org/10.1016/j.fct.2018.01.002
  • Tittlemier SA, Cramer B, Dall’Asta C, Iha MH, Lattanzio VMT, Malone RJ, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J. 2019. Developments in mycotoxin analysis: an update for 2017-2018. World Mycotoxin J. 12(1):3–29. doi:https://doi.org/10.3920/WMJ2018.2398
  • Upadhyay N, Dwivedy AK, Kumar M, Prakash B, Dubey NK. 2018. Essential oils as eco-friendly alternatives to synthetic pesticides for the control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Essential Oil Bearing Plants. 21(2):282–297. doi:https://doi.org/10.1080/0972060X.2018.1459875
  • Wang P, Ma L, Jin J, Zheng M, Pan L, Zhao Y, Sun X, Liu Y, Xing F. 2019. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus. Sci Rep. 9(1):1–11.
  • Wang W, Zhang Y, Yang Z, He Q. 2021. Effects of incorporation with clove (Eugenia caryophyllata) essential oil (CEO) on overall performance of chitosan as active coating. Int J Biol Macromol. 166:578–586.
  • Wan J, Zhong S, Schwarz P, Chen B, Rao J. 2018. Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food Funct. 9(5):2872–2882. doi:https://doi.org/10.1039/C7FO02073B
  • Wan J, Zhong S, Schwarz P, Chen B, Rao J. 2019a. Enhancement of antifungal and mycotoxin inhibitory activities of food-grade thyme oil nanoemulsions with natural emulsifiers. Food Control. 106:106709. doi:https://doi.org/10.1016/j.foodcont.2019.106709
  • Wan J, Zhong S, Schwarz P, Chen B, Rao J. 2019b. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: impact of oil compositions and processing parameters. Food Chem. 291:199–206. doi:https://doi.org/10.1016/j.foodchem.2019.04.032
  • Wawrzyniak J. 2021. Model of fungal development in stored barley ecosystems as a prognostic auxiliary tool for postharvest preservation systems. Food Bioprocess Technol. 14(2):298–309. doi:https://doi.org/10.1007/s11947-020-02575-x
  • Wu D, Lu J, Zhong S, Schwarz P, Chen B, Rao J. 2019. Influence of nonionic and ionic surfactants on the antifungal and mycotoxin inhibitory efficacy of cinnamon oil nanoemulsions. Food Funct. 10(5):2817–2827.
  • Xing M, Wang X, Zhao L, Zhou Z, Liu H, Wang B, Cheng A, Zhang S, Gao Y. 2021. Novel dissolving microneedles preparation for synergistic melasma therapy: combined effects of tranexamic acid and licorice extract. Int J Pharm. 600:120406. doi:https://doi.org/10.1016/j.ijpharm.2021.120406
  • Xue F, Zhao M, Liu X, Chu R, Qiao Z, Li C, Adhikari B. 2021. Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Future Foods. 3:100033. doi:https://doi.org/10.1016/j.fufo.2021.100033
  • Yang Y, Leser ME, Sher AA, McClements DJ. 2013. Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-Naturale®). Food Hydrocolloids. 30(2):589–596. doi:https://doi.org/10.1016/j.foodhyd.2012.08.008
  • Yang R, Miao J, Shen Y, Cai N, Wan C, Zou L, Chen C, Chen J. 2021. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. LWT. 141:110924. doi:https://doi.org/10.1016/j.lwt.2021.110924
  • Yilmaz E, Soylak M. 2020. Type of green solvents used in separation and preconcentration methods. In: New generation green solvents for separation and preconcentration of organic and inorganic species. Amsterdam (The Netherlands): Elsevier; p. 207–266.
  • Zemni H, Sghaier A, Khiari R, Chebil S, Ben Ismail H, Nefzaoui R, Hamdi Z, Lasram S. 2017. Physicochemical, phytochemical and mycological characteristics of Italia Muscat raisins obtained using different pre-treatments and drying techniques. Food Bioprocess Technol. 10(3):479–490. doi:https://doi.org/10.1007/s11947-016-1837-4
  • Zhang H, Godana EA, Sui Y, Yang Q, Zhang X, Zhao L. 2020. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Crit Rev Microbiol. 46(4):450–462.
  • Zhu F. 2017. Properties and food uses of chestnut flour and starch. Food Bioprocess Technol. 10(7):1173–1191. doi:https://doi.org/10.1007/s11947-017-1909-0
  • Zhu Z, Wen Y, Yi J, Cao Y, Liu F, McClements DJ. 2019. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: tea saponin, quillaja saponin, and tween 80. J Colloid Interface Sci. 536:80–87. doi:https://doi.org/10.1016/j.jcis.2018.10.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.