150
Views
1
CrossRef citations to date
0
Altmetric
Articles

Rapid detection of neutralising acid adulterants in raw milk using a milk component analyser and chemometrics

, , , , , , & show all
Pages 1501-1511 | Received 18 Mar 2022, Accepted 16 Jun 2022, Published online: 29 Jun 2022

References

  • Aiello A, Pizzolongo F, Manzo N, Romano R. 2019. A new method to distinguish the milk adulteration with neutralizers by detection of lactic acid. Food Anal Methods. 12(11):2555–2561. doi:10.1007/s12161-019-01594-5
  • Billard H, Simon L, Desnots E, Sochard A, Boscher C, Riaublanc A, Alexandre-Gouabau M-C, Boquien C-Y. 2016. Calibration adjustment of the mid-infrared analyzer for an accurate determination of the macronutrient composition of human milk. J Hum Lact. 32(3):NP19–NP27. doi:10.1177/0890334415588513
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140. doi:10.1007/BF00058655
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi:10.1023/A:1010933404324
  • Codex Alimentarius Commission 1991. Guidelines for the preservation of raw milk by use of the lactoperoxidase system.
  • Coimbra PT, Bathazar CF, Guimarães JT, Coutinho NM, Pimentel TC, Neto RPC, Esmerino EA, Freitas MQ, Silva MC, Tavares MIB, et al. 2020. Detection of formaldehyde in raw milk by time domain nuclear magnetic resonance and chemometrics. Food Control. 110:107006. doi:10.1016/j.foodcont.2019.107006
  • Coitinho TB, Cassoli LD, Cerqueira PHR, da Silva HK, Coitinho JB, Machado PF. 2017. Adulteration identification in raw milk using Fourier transform infrared spectroscopy. J Food Sci Technol. 54(8):2394–2402. doi:10.1007/s13197-017-2680-y
  • Cutler DR, Edwards TC, Jr Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random forests for classification in ecology. Ecology. 88(11):2783–2792. doi:10.1890/07-0539.1
  • de Santana FB, Neto WB, Poppi RJ. 2019. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food Chem. 293:323–332. doi:10.1016/j.foodchem.2019.04.073
  • de Souza Gondim C, Junqueira RG, de Souza SVC, Ruisánchez I, Callao MP. 2017. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem. 230:68–75. doi:10.1016/j.foodchem.2017.03.022
  • Erdem H, Okuyucu IC. 2019. Influence of hygiene status of cows on somatic cell count and milk components during summer season. Large Anim Rev. 25(1):7–10.
  • Gondim C, Paulo Borges dos Santos P, Penna e Palhares M, Cesar de Sousa R. 2021. Detection of acid neutralizers in fraudulent milk: full validation of a classical qualitative method. Quim Nova. 44:625–635.
  • Guo WC, Zhu DK, Zhang Q, et al. 2020. Detection on adulterated oil-tea camellia seed oil based on near-infrared spectroscopy. Trans Chin Soc Agric Mach. 51(09):350–357.
  • Hao X, Fu L, Shao L, Chen Q, Dorus B, Cao X, Fang F. 2022. Quantification of major milk proteins using ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry and its application in milk authenticity analysis. Food Control. 131:108455. doi:10.1016/j.foodcont.2021.108455
  • Hua JJ, Wang HJ, Wang JJ, Li J, Jiang YW, Wang YL, Yuan HB. 2020. Influences of first-drying methods on the quality of Congou black tea using partialleast squares-discrimination analysis. Trans Chin Soc Agric Eng. 36(8):260–270.
  • Kasapidou E, Basdagianni Z, Papadopoulos V, Karaiskou C, Kesidis A, Tsiotsias A. 2021. Effects of intensive and semi-intensive production on sheep milk chemical composition, physicochemical characteristics, fatty acid profile, and nutritional indices. Animals. 11(9):2578. doi:10.3390/ani11092578
  • Liu J, Ren J, Liu ZM, Guo BH. 2015. A new comprehensive index for discriminating adulteration in bovine raw milk. Food Chem. 172:251–256. doi:10.1016/j.foodchem.2014.09.063
  • Melo WO, Monteiro BM, Chaves LCS, Santos ERD, Souza DC, Amorim BS, Junior SPF, Filho JDR, Faturi C, Viana RB. 2018. Ultrasound spectroscopy as an alternative method to measure the physical-chemical constituents of buffalo milk. Cienc Rural. 48(2):e20170447. doi:10.1590/0103-8478cr20170447
  • Melucci D, Bendini A, Tesini F, Barbieri S, Zappi A, Vichi S, Conte L, Toschi TG. 2016. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics. Food Chem. 204:263–273. doi:10.1016/j.foodchem.2016.02.131
  • Ministry of Agriculture of the People's Republic of China. 2015. Technical specification for quality and safety control of pollution-free agricultural products part 9 Raw Milk.
  • National Health and Family Planning Commission of the People's Republic of China 2015. National food safety standard Food additive Sodium bicarbonate.
  • Pintus MC, Lussu M, Dessì A, Pintus R, Noto A, Masile V, Marcialis MA, Puddu M, Fanos V, Atzori L. 2018. Urinary 1H-NMR metabolomics in the first week of life can anticipate bpd diagnosis. Oxid Med Cell Longev. 2018:7620671. 2018. doi:10.1155/2018/7620671
  • Rico DE, Marshall ER, Choi J, Kaylegian KE, Dechow CD, Harvatine KJ. 2014. Within-milking variation in milk composition and fatty acid profile of Holstein dairy cows. J Dairy Sci. 97(7):4259–4268.
  • Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens. 67:93–104. doi:10.1016/j.isprsjprs.2011.11.002
  • Singh P, Gandhi N. 2015. Milk preservatives and adulterants: processing, regulatory and safety issues. Food Rev Int. 31(3):236–261. doi:10.1080/87559129.2014.994818
  • Swaisgood H. 1985. Characteristics of edible fluids of animal origin: milk. Food Chem. 2:796.
  • Tian HX, Liu H, He Y, Chen B, Xiao L, Fei Y, Wang G, Yu H, Chen C. 2020. Combined application of electronic nose analysis and back-propagation neural network and random forest models for assessing yogurt flavor acceptability. Food Measure. 14(1):573–583. doi:10.1007/s11694-019-00335-w
  • Tripathy S, Ghole AR, Deep K, Vanjari SRK, Singh SG. 2017. A comprehensive approach for milk adulteration detection using inherent bio-physical properties as ‘Universal Markers’: towards a miniaturized adulteration detection platform. Food Chem. 217:756–765. doi:10.1016/j.foodchem.2016.09.037
  • Wang HT, Luo XL, Chen MX, Xiong Q, Wan PM, Hu XZ, Zhang SJ. 2021. Common detection methods of five adulterants in milk and prospects of spectral detection technology. China Dairy Cattle. 4(01):46–51.
  • Wang YB, Liu DH, Ye XQ, Shen J. 2005. Study on the effect of ultrasonic milk analyser for detecting composition of milk adulterated with hydrolyzed animal protein powder and urea. J Chin Inst Food Sci Technol. 2005(02):98–102.
  • Wang YR, Bo S, Luo RM, Wang SL. 2021. Identification of adulteration of roast mutton based on electronic nose, GC-MS combined with chemometric methods. Food Sci. 43(4):291–298. http://kns.cnki.net/kcms/detail/11.2206.TS.20210531.1355.018.html.
  • Wei L, Ji YF. 2012. Test on the determination of alkali substances in raw milk. Xinjiang Ani Husbandry. (04):28.
  • Xu CH, Wang YX. 2020. Discrimination of three famous teas in Jiangxi using gas chromatography-mass spectrometry combined with chemometrics. Food Sci. 41(20):141–150.
  • Xu M, Wang J, Zhu L. 2019. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. 289:482–489. doi:10.1016/j.foodchem.2019.03.080
  • Yang J, Wang LF, Yao YP, Yin YF. 2017. Toxic effects of sodium thiocyanate in raw milk and its mechanism. Anim Husbandry Feed Sci. 38(09):44–47.
  • Zhou Y, Zuo Z, Xu F, Wang Y. 2020. Origin identification of Panax notoginseng by multi-sensor information fusion strategy of infrared spectra combined with random forest. Spectrochim Acta A Mol Biomol Spectrosc. 226:117619. doi:10.1016/j.saa.2019.117619
  • Zong LL, Ying Y, Tang SX. 2020. Determination of thiocyanate in milk by ion chromatography. Modern Food. 000(005)P.:167–169.
  • Zou GY, Wang WZ, Wang MM, Xiao YZ, Zhang HM. 2019. Quality detection of Xinyang Maojian tea using electronic nose and electronic tongue. Food Sci. 40(10):279–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.