390
Views
1
CrossRef citations to date
0
Altmetric
Article

Non-targeted detection of grape molasses adulteration with sugar and apple molasses by mid-infrared spectroscopy coupled to independent components analysis

, , & ORCID Icon
Pages 1-11 | Received 16 Jul 2022, Accepted 05 Oct 2022, Published online: 01 Nov 2022

References

  • Akbulut M, Çoklar H, Özen G. 2008. Rheological characteristics of Juniperus drupacea fruit juice (Pekmez) concentrated by boiling. Food Sci Technol Int. 14(4):321–328. doi:10.1177/1082013208097193
  • Balabin RM, Smirnov SV. 2011. Melamine detection by mid- and near-infrared (MIR/NIR) spectroscopy: A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta. 85(1):562–568. doi:http://dx.doi.org/10.1016/j.talanta.2011.04.026.
  • Cavin C, Cottenet G, Fuerer C, Tran LA, Zbinden P. 2018. Food fraud vulnerabilities in the supply chain: an industry perspective. In: Melton L, Shahidi F, Varelis P, Editor(s). Encyclopedia of Food Chemistry. Academic Press; p. 670–678.
  • Cozzolino D. 2012. Recent trends on the use of infrared spectroscopy to trace and authenticate natural and agricultural food products. Appl Spectrosc Rev. 47(7):518–530. doi:10.1080/05704928.2012.667858
  • Dhaulaniya AS, Balan B, Sodhi KK, Kelly S, Cannavan A, Singh DK. 2020. Qualitative and quantitative evaluation of corn syrup as a potential added sweetener in apple fruit juices using mid-infrared spectroscopy assisted chemometric modeling. LWT. 131:109749. doi:10.1016/j.lwt.2020.109749
  • Ehling S, Cole S. 2011. Analysis of organic acids in fruit juices by liquid chromatography-mass spectrometry: an enhanced tool for authenticity testing. J Agric Food Chem. 59(6):2229–2234. doi:10.1021/jf104527e
  • Ferreiro-González M, Espada-Bellido E, Guillén-Cueto L, Palma M, Barroso CG, Barbero GF. 2018. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta. 188:288–292. doi:10.1016/j.talanta.2018.05.095
  • Gallardo-Velázquez T, Osorio-Revilla G, de Loa MZ, Rivera-Espinoza Y. 2009. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res Int. 42(3):313–318. doi:10.1016/j.foodres.2008.11.010
  • Helvacıoğlu S, Charehsaz M, Güzelmeriç E, Türköz Acar E, Yeşilada E, Aydın A. 2018. Comparatively investigation of grape molasses produced by conventional and industrial techniques. MPJ. 22(1):44–51. doi:10.12991/mpj.2018.39
  • Huang F, Song H, Guo L, Guang P, Yang X, Li L, Zhao H, Yang M. 2020. Detection of adulteration in Chinese honey using NIR and ATR-FTIR spectral data fusion. Spectrochim Acta A Mol Biomol Spectrosc. 235:118297. doi:10.1016/j.saa.2020.118297
  • Institute of Turkish Standards (TSE) 1989. Turkish standard of grape Pekmez, TS. 3792.
  • Johnson R. 2014. Food fraud and “Economically motivated adulteration” of food and food ingredients. Food Fraud Adulterated Ingredients Background. Issues, Fed Action:1–56.
  • Jouan-Rimbaud Bouveresse D, Moya-González A, Ammari F, Rutledge DN. 2012. Two novel methods for the determination of the number of components in independent components analysis models. Chemom Intell Lab Syst. 112:24–32. doi:10.1016/j.chemolab.2011.12.005
  • Jouan-Rimbaud Bouveresse D, Rutledge D. N. 2016. Independent components analysis: theory and applications. In: Ruckebusch C, editor. Data Handling in Science and Technolog, 1st ed. Vol. 30. Elsevier; p. 225–277.
  • Kačuráková M, Mathlouthi M. 1996. FTIR and laser-Raman spectra of oligosaccharides in water: Characterization of the glycosidic bond. Carbohydr Res. 284(2):145–157. doi:10.1016/0008-6215(95)00412-2
  • Karoui R, Downey G, Blecker C. 2010. Mid-infrared spectroscopy coupled with chemometrics: A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships - a review. Chem Rev. 110(10):6144–6168. doi:10.1021/cr100090k
  • Kassouf A, Jouan-Rimbaud Bouveresse D, Rutledge DN. 2018. Determination of the optimal number of components in independent components analysis. Talanta. 179:538–545. doi:10.1016/j.talanta.2017.11.051
  • Kassouf A, Ruellan A, Jouan-Rimbaud Bouveresse D, Rutledge DN, Domenek S, Maalouly J, Chebib H, Ducruet V. 2016. Attenuated total reflectance-mid infrared spectroscopy (ATR-MIR) coupled with independent components analysis (ICA): a fast method to determine plasticizers in polylactide (PLA). Talanta. 147:569–580. doi:10.1016/j.talanta.2015.10.021
  • Khurana HK, Jun S, Cho IK, Li QN. 2008. Rapid determination of sugars in commercial fruit yogurts and yogurt drinks using Fourier transform infrared spectroscopy and multivariate analysis. Appl Eng Agric. 24(5):631–636.
  • Monakhova YB, Rutledge DN. 2020. Independent components analysis (ICA) at the “cocktail-party” in analytical chemistry. Talanta. 208:120451. doi:10.1016/j.talanta.2019.120451
  • Morales V, Corzo N, Sanz ML. 2008. HPAEC-PAD oligosaccharide analysis to detect adulterations of honey with sugar syrups. Food Chem. 107(2):922–928. doi:10.1016/j.foodchem.2007.08.050
  • Paradkar MM, Irudayaraj J, Sakhamuri S. 2009. Comparison of FTIR, FT-Raman, and NIR spectroscopy in a maple syrup adulteration study. Food Chem Toxicol. 67(6):2009–2015.
  • Paradkar MM, Sivakesava S, Irudayaraj J. 2003. Discrimination and classification of adulterants in maple syrup with the use of infrared spectroscopic techniques. J Sci Food Agric. 83(7):714–721. doi:10.1002/jsfa.1332
  • Rios-Corripio MA, Rojas-López M, Delgado-Macuil R. 2012. Analysis of adulteration in honey with standard sugar solutions and syrups using attenuated total reflectance-Fourier transform infrared spectroscopy and multivariate methods. CYTA - J Food. 10(2):119–122. doi:10.1080/19476337.2011.596576
  • Ruiz-Matute AI, Soria AC, Martínez-Castro I, Sanz ML. 2007. A new methodology based on GC-MS to detect honey adulteration with commercial syrups. J Agric Food Chem. 55(18):7264–7269. doi:10.1021/jf070559j
  • Ruoff K, Iglesias MT, Luginbühl W, Bosset JO, Bogdanov S, Amadò R. 2006. Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry. Eur Food Res Technol. 223(1):22–29. doi:10.1007/s00217-005-0085-z
  • Rutledge DN, Jouan-Rimbaud Bouveresse D. 2013. Independent components analysis with the JADE algorithm. TrAC - Trends Anal Chem. 50:22–32. doi:10.1016/j.trac.2013.03.013
  • Se KW, Ghoshal SK, Wahab RA, Ibrahim RKR, Lani MN. 2018. A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey. Food Res Int. 105:453–460. doi:10.1016/j.foodres.2017.11.012
  • Shah N, Cynkar W, Smith P, Cozzolino D. 2010. Use of attenuated total reflectance midinfrared for rapid and real-time analysis of compositional parameters in commercial white grape juice. J Agric Food Chem. 58(6):3279–3283. doi:10.1021/jf100420z
  • Şimşek A, Artık N, Baspinar E. 2004. Detection of raisin concentrate (Pekmez) adulteration by regression analysis method. J Food Compos Anal. 17(2):155–163. doi:10.1016/S0889-1575(03)00105-4
  • Soukoulis C, Tzia C. 2018. Grape, raisin and sugarcane molasses as potential partial sucrose substitutes in chocolate ice cream: a feasibility study. Int Dairy J. 76(August):18–29. doi:10.1016/j.idairyj.2017.08.004
  • Spinelli FR, Dutra SV, Carnieli G, Leonardelli S, Drehmer AP, Vanderlinde R. 2016. Detection of addition of apple juice in purple grape juice. Food Control. 69:1–4. doi:http://dx.doi.org/10.1016/j.foodcont.2016.04.005
  • Tosun M. 2013. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem. 138(2-3):1629–1632. doi:10.1016/j.foodchem.2012.11.068
  • Tosun M. 2014. Detection of adulteration in mulberry Pekmez samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem. 165:555–559. doi:10.1016/j.foodchem.2014.05.136
  • Tosun M, Keles F. 2012. Testing methods for mulberry Pekmez adulterated with different sugar syrups. Acad Food J. 10(1):17–23.
  • Trad M, Boge M, Ben Hamda H, Renard CMGC, Harbi M. 2017. The Glucose-Fructose ratio of wild Tunisian grapes. Cogent Food Agric. 3(1):1374156. doi:10.1080/23311932.2017.1374156
  • Wang S, Guo Q, Wang L, Lin L, Shi H, Cao H, Cao B. 2015. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 172:669–674. doi:10.1016/j.foodchem.2014.09.044
  • Wang J, Kliks MM, Jun S, Jackson M, Li QX. 2010. Rapid analysis of glucose, fructose, sucrose, and maltose in honeys from different geographic regions using fourier transform infrared spectroscopy and multivariate analysis. J Food Sci. 75(2):208–214.
  • WHO and WTO. 2017. Trade and food standards.
  • Yaman N, Velioglu SD. 2019. Use of attenuated total reflectance—Fourier transform infrared (ATR-FTIR) spectroscopy in combination with multivariate methods for the rapid determination of the adulteration of grape, carob and mulberry Pekmez. Foods. 8(7):231. doi:10.3390/foods8070231
  • Zhu X, Li S, Shan Y, Zhang Z, Li G, Su D, Liu F. 2010. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J Food Eng. 101(1):92–97. doi:10.1016/j.jfoodeng.2010.06.014
  • Zurayk R, Abdul Rahman S, Traboulsi T. 2008. From Akkar to Amel: Lebanon’s Slow Food Trail - places, products and producers from Lebanon. Slow Food Beirut. p. 90–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.