199
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of temperature on the pharmacokinetics, optimal dosage, tissue residue, and withdrawal time of florfenicol in asian seabass (lates calcarifer)

, , , , , & show all
Pages 235-246 | Received 20 Sep 2022, Accepted 27 Nov 2022, Published online: 15 Dec 2022

References

  • Amutha C, Subramanian P. 2010. Effect of temperature, salinity, pH and naphthalene on ethoxyresorufin-O-deethylase activity of Oreochromis mossambicus. Toxicol Environ Chem. 92(1):127–135. doi:10.1080/02772240903109092
  • AVMA 2020., AVMA guidelines for the euthanasia of animals: 2020 edition. Schaumburg (IL): American Veterinary Medical Association.
  • Bermudes M, Glencross B, Austen K, Hawkins W. 2010. The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture. 306(1-4):160–166. doi:10.1016/j.aquaculture.2010.05.031
  • Buckman AH, Brown SB, Small J, Muir DCG, Parrott J, Solomon KR, Fisk AT. 2007. Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout (Oncorhynchus mykiss). Environ Sci Technol. 41(11):3856–3863. doi:10.1021/es062437y
  • Chang Z, Chen Z, Gao H, Zhai Q, Li J. 2019. Pharmacokinetic profiles of florfenicol in spotted halibut, Verasper variegatus, at two water temperatures. J Vet Pharmacol Ther. 42(1):121–125. doi:10.1111/jvp.12668
  • Chai-Anan P, Limpoka M, Sittiphuprasert U, Vichkovitten T, Wongsommart D, Rongrodejanarak C. 1993. Absorption, distribution and excretion of sulfamethazine, oxytetracycline and oxoclinic acid in giant seaperch (Lates calcarifer) after single oral dosing and 5 days on medicated diet. In: haagsma N, Ruiter A, Czedik-Eysenberg PB, editors. EuroResidue II. Conference of Residues of Veterinary Drugs in Food; May 3-5; Veldhoven, The Netherlands: University of Utrecht. p. 231–235.
  • Chen RS, Sheu SY, Wang CY, Kuo CW, Wang JH, Kuo TF, Chou CH. 2020. Plasma and tissue depletion of oxolinic acid after administration to orange-spotted grouper (Epinephelus coioides), snubnose pompano (Trachinotus blochii) and giant seaperch (Lates calcarifer). Isr J Aquacult-Bamidgeh. 72: IJA_73.2021.961816.
  • Chin YK, Ina-Salwany MY, Zamri-Saad M, Amal MNA, Mohamad A, Lee JY, Annas S, Al-Saari N. 2020. Effects of skin abrasion in immersion challenge with Vibrio harveyi in Asian seabass Lates calcarifer fingerlings. Dis Aquat Org. 137(3):167–173. doi:10.3354/dao03435
  • Dong HT, Taengphu S, Sangsuriya P, Charoensapsri W, Phiwsaiya K, Sornwatana T, Khunrae P, Rattanarojpong T, Senapin S. 2017. Recovery of Vibrio harveyi from scale drop and muscle necrosis disease in farmed barramundi, Lates calcarifer in Vietnam. Aquaculture. 473:89–96. doi:10.1016/j.aquaculture.2017.02.005
  • EMA 2018. Guideline on determination of withdrawal periods for edible tissues, EMA/CVMP/SWP/735325/2012. Committee for Medicinal Products for Veterinary Use.
  • EU. 2004. Directive 2004/28/EC of the European Parliament and of the Council of 31 March 2004 Amending Directive 2001/82/EC on the Community Code Relating to Veterinary Medicinal Products. Official Journal of the European Union L. 136:58–84.
  • FAO. 2022. FishStatJ [software]. Ver 4.02.06. [accessed 2022 Jul 1]. http://www.fao.org/fishery/statistics/software/fishstatj/en.
  • Feng J, Jia X. 2008. Pharmacokinetics of florfenicol in tilapia at two water temperatures. South China Fish Sci. 4(4):49–54. [in Chinese].
  • Gaikowski MP, Mushtaq M, Cassidy P, Meinertz JR, Schleis SM, Sweeney D, Endris RG. 2010. Depletion of florfenicol amine, marker residue of florfenicol, from the edible fillet of tilapia (Oreochromis niloticus x O. niloticus and O. niloticus x O. aureus) following florfenicol administration in feed. Aquaculture. 301(1-4):1–6. doi:10.1016/j.aquaculture.2010.01.020
  • Hayton WL. 1999. Considerations in compartmental pharmacokinetic modeling in fish. In: smith DJ, Gingerich WH, Beconi-Barker MG, editors. Xenobiotics in fish. New York (NY): Springer; p. 55–72.
  • Huang Y, Chen X, Wang H, Zhao H, Luo Y, Wu Z. 2019. Pharmacokinetics of florfenicol in blunt‐snout bream (Megalobrama amblycephala) at two water temperatures with single‐dose oral administration. J Vet Pharmacol Ther. 42(5):564–571. doi:10.1111/jvp.12773
  • Joerakate W, Yenmak S, Senanan W, Tunkijjanukij S, Koonawootrittriron S, Poompuang S. 2018. Growth performance and genetic diversity in four strains of Asian sea bass, Lates calcarifer (Bloch, 1790) cultivated in Thailand. Agric Nat Resour. 52(1):93–98. doi:10.1016/j.anres.2018.05.015
  • Katersky RS, Carter CG. 2007. A preliminary study on growth and protein synthesis of juvenile barramundi, Lates calcarifer at different temperatures. Aquaculture. 267(1-4):157–164. doi:10.1016/j.aquaculture.2007.02.043
  • Kayansamruaj P, Dong HT, Nguyen VV, Le HD, Pirarat N, Rodkhum C. 2017. Susceptibility of freshwater rearing Asian seabass (Lates calcarifer) to pathogenic Streptococcus iniae. Aquac Res. 48(2):711–718. doi:10.1111/are.12917
  • Killen SS, Atkinson D, Glazier DS. 2010. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett. 13(2):184–193. doi:10.1111/j.1461-0248.2009.01415.x
  • Kogiannou D, Nikoloudaki C, Katharios P, Triga A, Rigos G. 2021. Evaluation of absorption and depletion of florfenicol in European seabass Dicentrarchus labrax. Veterinary Medicine & Sci. 7(3):987–997. doi:10.1002/vms3.415
  • Krupesha Sharma SR, Rathore G, Verma DK, Sadhu N, Philipose KK. 2012. Vibrio alginolyticus infection in Asian seabass (Lates calcarifer, Bloch) reared in open sea floating cages in India. Aquac Res. 44(1):86–92. doi:10.1111/j.1365-2109.2011.03013.x
  • Le Bouquin S, Thomas R, Jamin M, Baron S, Hanne-Poujade S, Chauvin C. 2021. A baseline survey of antimicrobial use and health issues in the freshwater salmonid industry in France. Aquacult Rep. 21:100906. doi:10.1016/j.aqrep.2021.100906
  • Li K, Liu L, Clausen JH, Lu M, Dalsgaard A. 2016. Management measures to control diseases reported by tilapia (Oreochromis spp.) and whiteleg shrimp (Litopenaeus vannamei) farmers in Guangdong, China. Aquaculture. 457:91–99. doi:10.1016/j.aquaculture.2016.02.008
  • Lillehaug A, Børnes C, Grave K. 2018. A pharmaco-epidemiological study of antibacterial treatments and bacterial diseases in Norwegian aquaculture from 2011 to 2016. Dis Aquat Org. 128(2):117–125. doi:10.3354/dao03219
  • Lin HC, Chen WY. 2021. Bayesian population physiologically-based pharmacokinetic model for robustness evaluation of withdrawal time in tilapia aquaculture administrated to florfenicol. Ecotoxicol Environ Saf. 210:111867. doi:10.1016/j.ecoenv.2020.111867
  • Luu QH, Nguyen TBT, Nguyen TLA, Do TTT, Dao THT, Padungtod P. 2021. Antibiotics use in fish and shrimp farms in Vietnam. Aquacult Rep. 20:100711. doi:10.1016/j.aqrep.2021.100711
  • Marques TV, Paschoal JAR, Barone RSC, Cyrino JEP, Rath S. 2018. Depletion study and estimation of withdrawal periods for florfenicol and florfenicol amine in pacu (Piaractus mesopotamicus). Aquac Res. 49(1):111–119. doi:10.1111/are.13439
  • McLusky DS, Elliott M. 2004. The estuarine ecosystem: ecology, threats, and management. 3rd ed. Oxford: oxford University Press.
  • Miranda CD, Godoy FA, Lee MR. 2018. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front Microbiol. 9:1284. doi:10.3389/fmicb.2018.01284
  • Morgan R, Andreassen AH, Åsheim ER, Finnøen MH, Dresler G, Brembu T, Loh A, Miest JJ, Jutfelt F. 2022. Reduced physiological plasticity in a fish adapted to stable temperatures. Proc Natl Acad Sci USA. 119(22):e2201919119.
  • Newton JR, Smith-Keune C, Jerry DR. 2010. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture. 308:s128–S132. doi:10.1016/j.aquaculture.2010.05.040
  • Norin T, Malte H, Clark TD. 2016. Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol. 30(3):369–378. doi:10.1111/1365-2435.12503
  • Piamsomboon P, Thanasaksiri K, Murakami A, Fukuda K, Takano R, Jantrakajorn S, Wongtavatchai J. 2020. Streptococcosis in freshwater farmed seabass Lates calcarifer and its virulence in Nile tilapia Oreochromis niloticus. Aquaculture. 523:735189. doi:10.1016/j.aquaculture.2020.735189
  • Piamsomboon P, Tanpichai P, Wongtavatchai J. 2021. Enteritis associated with subclinical infection of Streptococcus iniae in juvenile Asian seabass Lates calcarifer (Bloch, 1790). J Fish Dis. 44(11):1879–1882. doi:10.1111/jfd.13527
  • Pongthana N, Nguyen NH, Ponzoni RW. 2010. Comparative performance of four red tilapia strains and their crosses in fresh- and saline water environments. Aquaculture. 308:s109–S114. doi:10.1016/j.aquaculture.2010.07.033
  • Rairat T, Hsieh CY, Thongpiam W, Sung CH, Chou CC. 2019. Temperature-dependent pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) following single oral and intravenous administration. Aquaculture. 503:483–488. doi:10.1016/j.aquaculture.2018.12.081
  • Rairat T, Hsieh CY, Thongpiam W, Chou CC. 2019. Pharmacokinetic-pharmacodynamic modelling for the determination of optimal dosing regimen of florfenicol in Nile tilapia (Oreochromis niloticus) at different water temperatures and antimicrobial susceptibility levels. J Fish Dis. 42(8):1181–1190. doi:10.1111/jfd.13040
  • Rairat T, Hsieh CY, Thongpiam W, Chuchird N, Chou CC. 2020. Temperature-dependent non-linear pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) and its implementation in optimal dosing regimen determination. Aquaculture. 517:734794. doi:10.1016/j.aquaculture.2019.734794
  • Rairat T, Liu YK, Hsu JCN, Hsieh CY, Chuchird N, Chou CC. 2022. Combined effects of temperature and salinity on the pharmacokinetics of florfenicol in Nile tilapia (Oreochromis niloticus) reared in brackish water. Front Vet Sci. 9:826586.
  • Rairat T, Chen SM, Lu YP, Hsu JCN, Liu YK, Chou CC. 2022. Determination of temperature-dependent optimal oral doses of florfenicol and corresponding withdrawal times in Nile tilapia (Oreochromis niloticus) reared at 25 and 30 °C. Aquaculture. 561:738719. doi:10.1016/j.aquaculture.2022.738719
  • Rairat T, Kumphaphat S, Chuchird N, Srisapoome P, Phansawat P, Keetanon A, Liu YK, Chou CC. 2023. Pharmacokinetics, optimal dosages, and withdrawal time of florfenicol in Asian seabass (Lates calcarifer) after oral administration via medicated feed. J Fish Dis. 46(1):75–84. doi:10.1111/jfd.13719
  • Schulte PM. 2007. Responses to environmental stressors in an estuarine fish: Interacting stressors and the impacts of local adaptation. J Therm Biol. 32(3):152–161. doi:10.1016/j.jtherbio.2007.01.012
  • Song J, Brill RW, McDowell JR. 2019. Plasticity in standard and maximum aerobic metabolic rates in two populations of an estuarine dependent teleost, spotted Seatrout (Cynoscion nebulosus). Biology. 8(2):46. doi:10.3390/biology8020046
  • U.S. FDA. 2022. Approved aquaculture drugs. U.S. Food and Drug Administration. [Accessed 2022 Jul 1]. https://www.fda.gov/animalveterinary/developmentapprovalprocess/aquaculture/ucm132954.htm
  • Yang F, Yang F, Wang G, Kong T, Liu B. 2019. Pharmacokinetics of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus) at three temperatures after single oral administration. Aquaculture. 503:446–451. doi:10.1016/j.aquaculture.2019.01.037
  • Yang F, Yang F, Wang G, Kong T, Wang H, Zhang C. 2020. Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture. 515:734542. doi:10.1016/j.aquaculture.2019.734542
  • Zhang Y, Huo M, Zhou J, Xie S. 2010. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 99(3):306–314. doi:10.1016/j.cmpb.2010.01.007
  • Zhang Q, Zhang Y, Zhang X, Rabbi MH, Guo R, Shi S, Ma Z, Liu Y. 2021. Effects of dietary florfenicol contained feeds on growth and immunity of European seabass (Dicentrarchus labrax) in flow-through and recirculating aquaculture system. Aquacult Rep. 19:100602. doi:10.1016/j.aqrep.2021.100602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.