187
Views
0
CrossRef citations to date
0
Altmetric
Articles

Identifying the origin of acrylamide in Peruvian panela production to inform strategies for its reduction

, , , , , & show all
Pages 508-517 | Received 10 Dec 2022, Accepted 24 Feb 2023, Published online: 15 Mar 2023

References

  • Abt E, Incorvati V, Robin L. 2022. Acrylamide: perspectives from international, national, and regional exposure assessments. Curr Opin Food Sci. 47:100891. doi:10.1016/j.cofs.2022.100891
  • Baskar G, Aiswarya R, Renganathan S. Applications of Asparaginase in Food Processing. In: Arameswaran B, Varjani S, Raveendran S, editors. Green bio-process enzym ind food process. Singapore: Springer; 2019. p. 83–98. doi:10.1007/978-981-13-3263-0_6
  • Curtis TY, Halford NG. 2016. Reducing the acrylamide-forming potential of wheat. Food Energy Secur. 5(3):153–164. doi:10.1002/fes3.85
  • Delgado Calderon L. 2022. Determinacion y reduccion del contenido de asparagina en jugo de caña de azucar con metodos enzimaticos [Undergraduate]. Peru: Universidad de Piura.
  • De Maria G. 2013. Panela: the natural nutritional sweetener. Agro TECH Industry HiTech. 24(6):44–48.
  • European Commission. 2017. Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. OJEU. 304:24–40. http://data.europa.eu/eli/reg/2017/2158/oj
  • Gómez-Narváez F, Mesías M, Delgado-Andrade C, Contreras-Calderón J, Ubillús F, Cruz G, Morales FJ. 2019. Occurrence of acrylamide and other heat-induced compounds in panela: Relationship with physicochemical and antioxidant parameters. Food Chem. 301:125256. doi:10.1016/j.foodchem.2019.125256
  • Guerrero Cordova L. 2020. Evaluacion de reguladores de pH para mejorar el proceso de panela granulada en su incidencia de formacion de acrilamida en el distrito de Yamango [Undergraduate]. Peru: Universidad Nacional de Piura.
  • Halford NG, Muttucumaru N, Curtis TY, Parry MAJ. 2007. Genetic and agronomic approaches to decreasing acrylamide precursors in crop plants. Food Addit Contam. 24(sup1):26–36. doi:10.1080/02652030701403093
  • Henao Toro SJ, Gómez-Narváez F, Contreras-Calderón J, Arisseto AP. 2022. Acrylamide in sugar products. Curr Opin Food Sci. 45:100841. doi:10.1016/j.cofs.2022.100841
  • Kepekci Tekkeli SE, Önal C, Önal A. 2012. A Review of Current Methods for the Determination of Acrylamide in Food Products. Food Anal Methods. 5(1):29–39. doi:10.1007/s12161-011-9277-2
  • Kisnin N, Syed M, Ahmad S. 2015. Toxicity, pollution and biodegradation of acrylamide- a mini review. J Biochem Microbiol Biotechnol. 3(2):6–12. doi:10.54987/jobimb.v3i2.273
  • Knutsen S. 2007. Acrylamide precursors - limiting substrates and in vivo effects (NORDACRYL) [Internet]. Norway: Matforsk AS, Nordic Innovation. nbn:se:norden:org:diva-2744.
  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG. 2007. Asparagine in plants. Ann Appl Biol. 150(1):1–26. doi:10.1111/j.1744-7348.2006.00104.x
  • Matsui T, Kitagawa H. 1987. Seasonal Changes of Activities of Asparagine Synthetase and Asparaginase in Relation to Asparagine Content in Sugarcane. Nippon Shokuhin Kogyo Gakkaishi. 34(10):673–679. doi:10.3136/nskkk1962.34.10_673
  • Megazyme. 2018a. L-asparagine/L-glutamine/ammonia (Rapid) Assay procedure. https://www.megazyme.com/documents/Assay_Protocol/K-ASNAM_DATA.pdf
  • Megazyme. 2018b. D-fructose and D glucose assay procedure [Internet]. https://www.megazyme.com/documents/Assay_Protocol/K-FRUGL_DATA.pdf
  • Muttucumaru N, Powers SJ, Elmore JS, Dodson A, Briddon A, Mottram DS, Halford NG. 2017. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation. Food Chem. 220:76–86. doi:10.1016/j.foodchem.2016.09.199
  • Oddy J, Raffan S, Wilkinson MD, Elmore JS, Halford NG. 2020. Stress, nutrients and genotype: understanding and managing asparagine accumulation in wheat grain. CABI Agric Biosci. 1(1):10. doi:10.1186/s43170-020-00010-x
  • Oddy J, Raffan S, Wilkinson MD, Elmore JS, Halford NG. 2022. Understanding the Relationships between Free Asparagine in Grain and Other Traits to Breed Low-Asparagine Wheat. Plants. 11(5):669. doi:10.3390/plants11050669
  • Powers SJ, Mottram DS, Curtis A, Halford NG. 2017. Acrylamide levels in potato crisps in Europe from 2002 to 2016. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 34(12):2085–2100. doi:10.1080/19440049.2017.1379101
  • Powers SJ, Mottram DS, Curtis A, Halford NG. 2021. Progress on reducing acrylamide levels in potato crisps in Europe, 2002-2019. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 38(5):782–806. doi:10.1080/19440049.2020.1871083
  • Rimaicuna Zurita D. 2020. Cuantificacion de acrilamida y humedad de panela granulada por los factores de almacenamiento de caña, regulador del jugo y temperatura de salida, Peru 2019 [Undergraduate]. Peru: Universidad Nacional de Piura.
  • Rufino L. 2018. Estudio de acrilamida en la panela granulada. Peru: ONG Progreso, Piura.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.