220
Views
0
CrossRef citations to date
0
Altmetric
Articles

Challenges related to the application of analytical methods to control insect meals in the context of European legislation

ORCID Icon, , , , , & show all
Pages 699-710 | Received 12 Jan 2023, Accepted 02 May 2023, Published online: 10 May 2023

References

  • Abo Arab RB, El-Tawelah NM, Abouelatta AM, Hamza AM. 2022. Potential of selected plant essential oils in management of Sitophilus oryzae (L.) and Rhiyzopertha dominica (F.) on wheat grains. Bull Natl Res Cent. 46(1):192. doi:10.1186/s42269-022-00894-x
  • Akinbuluma MD, Okunlola OT, Alabi OY, Omobusuyi DO. 2022. Towards food security: essential oil components as protectants against the rice weevil. Sitophilus Oryzae. 15(2):5. doi:10.54319/jjbs/150205
  • Anselmo A. 2022. Detection of processed animal proteins (PAPs) by near-infrared microscopy (NIRM). Presented at: vibrational spectroscopy and Chemometrics workshop. 10th International Symposium of Recent Advances in Food Analysis; Sep 6–9; Prague, Czech Republic.
  • Anselmo A, Cordonnier A, Veys P, Stevens F, Fernández Pierna JA, Baeten V. 2022. Detection of insect meal in animal feed by the use of near-infrared microscopy (NIRM). Poster Session Presented at: 10th International Symposium of Recent Advances in Food Analysis; Sep 6-9; Prague, Czech Republic.
  • Baeten V, Dardenne P. 2016. NIR-BASED detection of contaminants in food and feed. Feedipedia. [accessed 2021 Jan 13]. https://www.feedipedia.org/content/nir-based-detection-contaminants-food-and-feed.
  • Baeten V, Fernández Pierna JA, Vermeulen P, Dardenne P. 2010. NIR hyperspectral imaging methods for quality and safety control of food and feed products: contributions to four European Projects. NIR News. 21(6):10–13. doi:10.1255/nirn.1200
  • Baeten V, von Holst C, Garrido A, Vancutsem J, Michotte Renier A, Dardenne P. 2005. Detection of banned meat and bone meal in feedstuffs by near-infrared microscopic analysis of the dense sediment fraction. Anal Bioanal Chem. 382(1):149–157. doi:10.1007/s00216-005-3193-5
  • Baeten V, Vermeulen P, Vancutsem J, Bosch J, Berben G, Brambilla G, Boix A, Portetelle D, Garrido A, Marin DP, et al. 2004. Comparison and Complementarity of the methods. In: Strategies and Methods to detect and quantify mammalian tissues in feedingstuffs. Bruxelles - Belgium: European Commission. p. 12. http://STRATFEED.cra.wallonie.be.
  • Baeten V, Von Holst C, Banks I, Michotte Renier A, Murray I, Dardenne P. 2004. The near-infrared microscopic (NIRM) method : combination of the advantages of optical microscopy and near-infrared spectroscopy (WP5-NIRM). In: Strategies and Methods to detect and quantify mammalian tissues in feedingstuffs. Bruxelles - Belgium: European Commission. http://STRATFEED.cra.wallonie.be.
  • Barragan-Fonseca KB, Dicke M, van Loon JJA. 2017. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed–a review. J Insects Food Feed. 3(2):105–120. doi:10.3920/JIFF2016.0055
  • Belghit I, Lock E-J, Fumière O, Lecrenier M-C, Renard P, Dieu M, Berntssen M, Palmblad M, Rasinger J. 2019. Species-specific discrimination of insect meals for aquafeeds by direct comparison of Tandem mass spectra. Animals. 9(5):222. doi:10.3390/ani9050222
  • Belghit I, Varunjikar M, Lecrenier M-C, Steinhilber A, Niedzwiecka A, Wang YV, Dieu M, Azzollini D, Lie K, Lock E-J, et al. 2021. Future feed control–Tracing banned bovine material in insect meal. Food Control. 128:108183. doi:10.1016/j.foodcont.2021.108183
  • Boix A, Fernández Pierna JA, von Holst C, Baeten V. 2012. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 29(12):1872–1880. doi:10.1080/19440049.2012.712551
  • Bonjour EL, Opit GP, Hardin J, Jones CL, Payton ME, Beeby RL. 2011. Efficacy of ozone fumigation against the major grain pests in stored wheat. J ECon entomol. 104(1):308–316. doi:10.1603/EC10200
  • Boopathy B, Rajan A, Radhakrishnan M. 2022. Ozone: an alternative fumigant in controlling the stored product insects and pests: a status report. Ozone: science & Engineering. 44(1):79–95. doi:10.1080/01919512.2021.1933899
  • Bousquet Y. 1990. Beetles associated with stored products in Canada: an identification guide. Research Branch. Ottawa, Ontario: Agriculture Canada.
  • Chaudhari AK, Singh VK, Kedia A, Das S, Dubey NK. 2021. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects. Environ Sci Pollut Res Int. 28(15):18918–18940. doi:10.1007/s11356-021-12841-w
  • Daniso E, Melpignano P, Tulli F. 2020. An OLED-based genosensor for the detection of Hermetia illucens in feeds. Food Control. 113:107179. doi:10.1016/j.foodcont.2020.107179
  • Dardenne P, Baeten V, Berben G, Vermeulen P, Garrido Varo A, van Raamsdonk L, Brambilla G, Murray I, von Holst C. 2005. Strategies and methods to detect and quantify mammalian tissues in feedingstuffs. Dardenne, P. Bruxelles: European Commission.
  • De Marco M, Martínez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, et al. 2015. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 209:211–218. doi:10.1016/j.anifeedsci.2015.08.006
  • Debode F, Marien A, Gérard A, Francis F, Fumière P, Berben G. 2017. Development of real-time PCR tests for the detection of Tenebrio molitor in food and feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 34(8):1421–1426. doi:10.1080/19440049.2017.1320811
  • Delarozadelgado B, Soldado A, Martinez-Fernandez A, Vicente F, Garridovaro A, Perezmarin D, Delahaba M, Guerreroginel J. 2007. Application of near-infrared microscopy (NIRM) for the detection of meat and bone meals in animal feeds: a tool for food and feed safety. Food Chem. 105(3):1164–1170. doi:10.1016/j.foodchem.2007.02.041
  • Dobrovolny S, Blaschitz M, Weinmaier T, Pechatschek J, Cichna-Markl M, Indra A, Hufnagl P, Hochegger R. 2019. Development of a DNA metabarcoding method for the identification of fifteen mammalian and six poultry species in food. Food Chem. 272:354–361. doi:10.1016/j.foodchem.2018.08.032
  • EURL-AP 2013. EURL-AP Standard Operating Procedure - Slide preparation and mounting. https://www.eurl.craw.eu/wp-content/uploads/2021/01/EURL-AP-SOP-slide-mounting-V1.0.pdf.
  • EURL-AP 2014. EURL-AP Standard Operating Procedure - DNA extraction using the ‘Wizard® Magnetic DNA purification system for Food’ kit. https://www.eurl.craw.eu/wp-content/uploads/2021/01/EURL-AP-SOP-DNA-extraction-V1.1.pdf.
  • EURL-AP 2021a. EURL-AP Standard Operating Procedure - Detection of ruminant DNA in feed using real-time PCR. https://www.eurl.craw.eu/wp-content/uploads/2021/05/EURL-AP-SOP-Ruminant-PCR-V1.3.pdf.
  • EURL-AP 2021b. EURL-AP Standard Operating Procedure - Detection of pig DNA in feed using real-time PCR. https://www.eurl.craw.eu/wp-content/uploads/2021/09/EURL-AP-SOP-Pig-PCR-V1.0.pdf.
  • EURL-AP 2022a. EURL-AP Standard Operating Procedure - On the use of the observation flowchart for light microscopy. https://www.eurl.craw.eu/wp-content/uploads/2020/12/EURL-AP-SOP-observation-flowchart-V1.0.pdf.
  • EURL-AP 2022b. EURL-AP Standard Operating Procedure - Detection of poultry (chicken and turkey) DNA in feed using real-time PCR. https://www.eurl.craw.eu/wp-content/uploads/2021/09/EURL-AP-SOP-Poultry-PCR-V1.0.pdf.
  • European Commission. 1994. 94/381/EC : Commission Decision of 27 June 1994 concerning certain protection measures with regard to bovine spongiform encephalopathy and the feeding of mammalian derived protein (Text with EEA relevance). Official Journal of the European Union. L. 172:23–24.
  • European Commission. 2001. Regulation (EC) No 999/2001 of the European Parliament and the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. O JE U. L147:1–40.
  • European Commission. 2002. Regulation (EC) No 1774/2002 of the European Parliament and of the Council of 3 October 2002. O J EU. L 273/. 1:95.
  • European Commission. 2003. Commission directive 2003/123/EC of 23 December 2003 on the analytical method for the determination of constituents of animal origin for the official control of feedingstuffs. OJEU. L339/78:7.
  • European Commission. 2009. Commission regulation (EC) No 125/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. OJEU. L54/1:1–130.
  • European Commission. 2013. Commission Regulation (EU) No 56/2013 of 16 January 2013 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies.OJEU. L21/3:14.
  • European Commission. 2017. Règlement (UE) 2017/893 de la Commission - du 24 mai 2017 - modifiant les annexes I et IV du règlement (CE) No 999/2001 du Parlement européen et du Conseil et les annexes X, XIV et XV du règlement (UE) No 142/2011 de la Commission concernant les dispositions relatives aux protéines animales transformées. O J E U. L138:92–116.
  • European Commission. 2021a. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals. Off. 64(L295):1–21.
  • European Commission. 2021b. Commission Regulation (EU) 2021/1925 of 5 November 2021 amending certain Annexes to Regulation (EU) No 142/2011 as regards the requirements for placing on the market of certain insect products and the adaptation of a containment method. OJEU. L393:4–8.
  • European Commission. 2022. Commission Implementing Regulation (EU) 2022/893 of 7 June 2022 amending Annex VI to Regulation (EC) No 152/2009 as regards the methods of analysis for the detection of constituents of terrestrial invertebrates for the official control of feed.OJEU. /24:12.
  • FAO (Food and Agriculture Organization of the United Nations). 2013. Edible insects: future prospects for food and feed security. FAO Forestry Paper No. 171.
  • Fernández Pierna J. A, Baeten V, Renier AM, Cogdill RP, Dardenne P. 2004. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. J Chemometrics. 18(7-8):341–349. doi:10.1002/cem.877
  • Fernández Pierna JA, Dardenne P, Baeten V. 2010. In-house validation of a near Infrared Hyperspectral Imaging Method for detecting processed animal proteins in compound Feed. J Near Infrared Spectrosc. 18(2):121–133. doi:10.1255/jnirs.872
  • Fumière O, Dubois M, Baeten V, von Holst C, Berben G. 2006. Effective PCR detection of animal species in highly processed animal by-products and compound feeds. Anal Bioanal Chem. 385(6):1045–1054. doi:10.1007/s00216-006-0533-z
  • Fumière O, Veys P, Boix A, von Holst C, Baeten V, Berben G. 2009. Methods of detection, species identification and quantification of processed animal proteins in feedingstruffs. Biotechnol Agron Soc Environ. 13:59–70. https://popups.uliege.be/1780-4507/index.php?id=3525.
  • Fumière O, Zagon J, Lecrenier M-C. 2022. Re-authorization of gelatin and collagen of ruminant origin in non-ruminant feed: a new analytical challenge for the control of the feed ban. ? Biotechnol Agron Soc Environ. 26:303–308. doi:10.25518/1780-4507.20059
  • Garrido-Sanz L, Àngel Senar M, Piñol J. 2022. Drastic reduction of false positive species in samples of insects by intersecting the default output of two popular metagenomic classifiers. Kalendar R, editor. PLOS One. 17(10):e0275790. doi:10.1371/journal.pone.0275790
  • Hellberg RS, Hernandez BC, Hernandez EL. 2017. Identification of meat and poultry species in food products using DNA barcoding. Food Control. 80:23–28. doi:10.1016/j.foodcont.2017.04.025
  • Hong J, Han T, Kim YY. 2020. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: a review. Animals. 10(11):2068. doi:10.3390/ani10112068
  • Kröncke N, Benning R. 2022. Determination of moisture and protein content in living Mealworm Larvae (Tenebrio molitor L.) Using near-infrared reflectance spectroscopy (NIRS). Insects. 13(6):560. doi:10.3390/insects13060560
  • Lecrenier MC, Marbaix H, Dieu M, Veys P, Saegerman C, Raes M, Baeten V. 2016. Identification of specific bovine blood biomarkers with a non-targeted approach using HPLC ESI tandem mass spectrometry. Food Chem. 213:417–424. doi:10.1016/j.foodchem.2016.06.113
  • Lecrenier M-C, Marien A, Veys P, Belghit I, Dieu M, Gillard N, Henrottin J, Herfurth UM, Marchis D, Morello S, et al. 2021. Inter-laboratory study on the detection of bovine processed animal protein in feed by LC-MS/MS-based proteomics. Food Control. 125:107944. doi:10.1016/j.foodcont.2021.107944
  • Lecrenier MC, Planque M, Dieu M, Veys P, Saegerman C, Gillard N, Baeten V. 2018. A mass spectrometry method for sensitive, specific and simultaneous detection of bovine blood meal, blood products and milk products in compound feed. Food Chem. 245:981–988. doi:10.1016/j.foodchem.2017.11.074
  • Lecrenier MC, Veys P, Fumière O, Berben G, Saegerman C, Baeten V. 2020. Official feed control linked to the detection of animal by-products: past, present, and future. J Agric Food Chem. 68(31):8093–8103. doi:10.1021/acs.jafc.0c02718
  • Mandrile L, Amato G, Marchis D, Martra G, Rossi AM. 2017. Species-specific detection of processed animal proteins in feed by Raman spectroscopy. Food Chem. 229:268–275. doi:10.1016/j.foodchem.2017.02.089
  • Mandrile L, Fusaro I, Amato G, Marchis D, Martra G, Rossi AM. 2018. Detection of insect’s meal in compound feed by near infrared spectral imaging. Food Chem. 267:240–245. doi:10.1016/j.foodchem.2018.01.127
  • Marbaix H, Budinger D, Dieu M, Fumière O, Gillard N, Delahaut P, Mauro S, Raes M. 2016. Identification of proteins and peptide biomarkers for detecting banned processed animal proteins (PAPs) in meat and bone meal by mass spectrometry. J Agric Food Chem. 64(11):2405–2414. doi:10.1021/acs.jafc.6b00064
  • Marien A, Debode F, Aerts C, Ancion C, Francis F, Berben G. 2018. Detection of Hermetia illucens by real-time PCR. J Insects Food Feed. 4(2):115–122. 8). doi:10.3920/JIFF2017.0069
  • Murray I, Aucott LS, Pike IH. 2001. Use of discriminant analysis on visible and near infrared reflectance spectra to detect adulteration of fishmeal with meat and bone meal. J Near Infrared Spectrosc. 9(4):297–311. doi:10.1255/jnirs.315
  • Ocaña MF, Neubert H, Przyborowska A, Parker R, Bramley P, Halket J, Patel R. 2004. BSE Control: detection of gelatine-derived peptides in animal feed by mass spectrometry. Analyst. 129(2):111–115. doi:10.1039/B312593A
  • Piraux F, Dardenne P. 2000. Feed authentication by near infrared microscopy. Near infrared spectroscopy: Proceedings of the 9th International Conference.:535.
  • Sánchez-Muros M-J, Barroso F, Manzano-Agugliaro F. 2014. Insect meal as renewable source of food for animal feeding: a review. J Cleaner Prod. 65:16–27. doi:10.1016/j.jclepro.2013.11.068
  • Sousa AH, Faroni LRD, Guedes RNC, Tótola MR, Urruchi WI. 2008. Ozone as a management alternative against phosphine-resistant insect pests of stored products. J Stored Prod Res. 44(4):379–385. doi:10.1016/j.jspr.2008.06.003
  • Steinhilber A, Schmidt F, Naboulsi W, Planatscher H, Niedzwiecka A, Zagon J, Braeuning A, Lampen A, Joos T, Poetz O. 2018. Species differentiation and quantification of processed animal proteins and blood products in fish feed using an 8-plex mass spectrometry-based immunoassay. J Agric Food Chem. 66(39):10327–10335. doi:10.1021/acs.jafc.8b03934
  • Steinhilber A, Schmidt F, Naboulsi W, Planatscher H, Niedzwiecka A, Zagon J, Braeuning A, Lampen A, Joos T, Poetz O. 2019. Application of mass spectrometry-based immunoassays for the species- and tissue-specific quantification of banned processed animal proteins in feeds. Anal Chem. 91(6):3902–3911. doi:10.1021/acs.analchem.8b04652
  • Tena N, Fernández Pierna JA, Boix A, Baeten V, von Holst C. 2014. Differentiation of meat and bone meal from fishmeal by near-infrared spectroscopy: extension of scope to defatted samples. Food Control. 43:155–162. doi:10.1016/j.foodcont.2014.03.001
  • van Raamsdonk L, Zegers J, van Cutsem J, Bosch J, Pinckaers V, Jorgenson JS, Frick G, Paradies-Severin I. 2005. Microscopic detection of animal by-products in feed (WP3). In: Dardenne P, editor. Strategies and methods to detect and quantify mammalian tissues in feedingstuffs. Bruxelles (BE): European Commission. p. 16.
  • Veldkamp T, Bosch G. 2015. Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front. 5(2):6. doi:10.2527/af.2015-0019
  • Veys P, Baeten V. 2018. Protocol for the isolation of processed animal proteins from insects in feed and their identification by microscopy. Food Control. 92:496–504. doi:10.1016/j.foodcont.2018.05.028
  • Veys P, Baeten V, Berben G. 2019. Validation study on the isolation of insect PAP in feed by double sedimentation method PE/TCE and subsequent detection by light microscopy. [accessed 2019 Oct 23]. https://www.eurl.craw.eu/wp-content/uploads/2019/10/report_insect_study_final.pdf.
  • Veys P, Berben G, Baeten V. 2009. CRL-AP Proficiency Test 2009. [accessed 2012 May 1]. https://www.eurl.craw.eu/wp-content/uploads/2012/05/20120524997bfeb6.pdf.
  • Veys P, Berben G, Dardenne P, Baeten V. 2012. Detection and identification of animal by-products in animal feed for the control of transmissible spongiform encephalopathies. In: Fink-Gremmels J, editor. Woodhead Publishing Series in Food Science, Technology and Nutrition, Animal Feed Contamination - Effects on Livestock and Food Safety. Woodhead Publishing; p. 94–113. doi:10.1533/9780857093615.1.94
  • von Holst C, Boix A, Baeten V, Vancutsem J, Berben G. 2006. Determination of processed animal proteins in feed: the performance characteristics of classical microscopy and immunoassay methods. Food Addit Contam. 23(3):252–264. doi:10.1080/02652030500471804
  • Wardhana AH. 2017. Black Soldier Fly (Hermetia illucens) as an Alternative Protein Source for Animal Feed. WARTAZOA. 26(2):069. doi:10.14334/wartazoa.v26i2.1327
  • Zagon J, di Rienzo V, Potkura J, Lampen A, Braeuning A. 2018. A real-time PCR method for the detection of black soldier fly (Hermetia illucens) in feedstuff. Food Control. 91:440–448. doi:10.1016/j.foodcont.2018.04.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.