184
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of microRNAs in the toxic mechanisms of furan and 3-MCPD and links to cancer risk – a review

, &
Pages 733-744 | Received 23 Jan 2023, Accepted 12 May 2023, Published online: 30 May 2023

References

  • Abraham K, Appel KE, Berger-Preiss E, Apel E, Gerling S, Mielke H, Creutzenberg O, Lampen A. 2013. Relative oral bioavailability of 3-MCPD from 3-MCPD fatty acid esters in rats. Arch Toxicol. 87(4):649–659. doi:10.1007/s00204-012-0970-8
  • Araujo M, Beekman JK, Mapa MST, MacMahon S, Zhao Y, Flynn TJ, Flannery B, Mossoba ME, Sprando RL. 2020. Assessment of intestinal absorption/metabolism of 3-chloro-1,2-propanediol (3-MCPD) and three 3-MCPD monoesters by Caco-2 cells. Toxicol In Vitro. 67:104887. doi:10.1016/j.tiv.2020.104887
  • Arisseto AP, Marcolino PFC, Vicente E. 2014. Determination of 3-monochloropropane-1,2-diol fatty acid esters in Brazilian vegetable oils and fats by an in-house validated method. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 31(8):1385–1392. doi:10.1080/19440049.2014.926400
  • Arisseto AP, Vicente E, Soares Ueno M, Tfouni SAV, Toledo MCDF. 2011. Furan levels in coffee as influenced by species, roast degree, and brewing procedures. J Agric Food Chem. 59(7):3118–3124. doi:10.1021/jf104868g
  • Bellet MM, Stincardini C, Costantini C, Gargaro M, Pieroni S, Castelli M, Piobbico D, Sassone-Corsi P, Della-Fazia MA, Romani L, et al. 2021. The circadian protein PER1 modulates the cellular response to anticancer treatments. IJMS. 22(6):2974. doi:10.3390/ijms22062974
  • Bertheloot D, Latz E, Franklin BS. 2021. Necroptosis, pyroptosis and apoptosis : an intricate game of cell death. Cell Mol Immunol. 18(5):1106–1121. doi:10.1038/s41423-020-00630-3
  • Braeuning A, Sawada S, Oberemm A, Lampen A. 2015. Analysis of 3-MCPD- and 3-MCPD dipalmitate-induced proteomic changes in rat liver. Food Chem Toxicol. 86(1881):374–384. doi:10.1016/j.fct.2015.11.010
  • Buhrke T, Frenzel F, Kuhlmann J, Lampen A. 2015. 2-Chloro-1,3-propanediol (2-MCPD) and its fatty acid esters: cytotoxicity, metabolism, and transport by human intestinal Caco-2 cells. Arch Toxicol. 89(12):2243–2251. doi:10.1007/s00204-014-1395-3
  • Buhrke T, Schultrich K, Braeuning A, Lampen A. 2017. Comparative analysis of transcriptomic responses to repeated-dose exposure to 2-MCPD and 3-MCPD in rat kidney, liver and testis. Food Chem Toxicol. 106(Pt A):36–46. doi:10.1016/j.fct.2017.05.028
  • Buhrke T, Voss L, Briese A, Stephanowitz H, Krause E, Braeuning A, Alfonso L. 2018. Oxidative inactivation of the endogenous antioxidant protein DJ ‑ 1 by the food contaminants 3 ‑ MCPD and 2 ‑ MCPD. Arch Toxicol. 92(1):289–299. doi:10.1007/s00204-017-2027-5
  • Burka LT, Washburn KD, Irwin RD. 1991. Disposition of [14C]furan in the male F344 rat. J Toxicol Environ Health. 34(2):245–257. doi:10.1080/15287399109531564
  • Chen T, Williams TD, Mally A, Hamberger C, Mirbahai L, Hickling K, Chipman JK. 2012. Gene expression and epigenetic changes by furan in rat liver. Toxicology. 292(2-3):63–70. doi:10.1016/j.tox.2011.10.020
  • Cho W, Han BS, Nam KT, Park K, Choi M, Kim SH, Jeong J, Jang DD. 2008. Carcinogenicity study of 3-monochloropropane-1, 2-diol in Sprague – Dawley rats. Food Chem Toxicol. 46(9):3172–3177. doi:10.1016/j.fct.2008.07.003
  • Clements CM, Mcnally RS, Conti BJ, Mak TW, Ting JP. 2006. DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA. 103(41):15091–15096. doi:10.1073/pnas.0607260103
  • Conti AD, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. 2016. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol. 98(Pt A):2–10. doi:10.1016/j.fct.2016.06.027
  • Crews C, Castle L. 2007. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci Technol. 18(7):365–372. doi:10.1016/j.tifs.2007.03.006
  • Dhuriya YK, Sharma D. 2018. Necroptosis : a regulated inflammatory mode of cell death. J Neuroinflammation. 15(1):1–9. doi:10.1186/s12974-018-1235-0
  • Dong H, Gill S, Curran IH, Williams A, Kuo B, Wade MG, Yauk CL. 2016. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol. 90(6):1351–1367. doi:10.1007/s00204-015-1561-2
  • EFSA. 2011. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment.
  • EFSA. 2016. Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. [place unknown]. doi:10.2903/j.efsa.2016.4426
  • Frenzel F, Oberemm A, Braeuning A, Lampen A. 2018. Proteomic analysis of 2-monochloropropanediol (2-MCPD) and 2-MCPD dipalmitate toxicity in rat kidney and liver in a 28-days study. Food Chem Toxicol. 121(May):1–10. doi:10.1016/j.fct.2018.08.013
  • Furth N, Aylon Y, Oren M. 2018. p53 shades of hippo. Cell Death Differ. 25(1):81–92. doi:10.1038/cdd.2017.163
  • Gao B, Liu M, Huang G, Zhang Z, Zhao Y, Wang TTY, Zhang Y, Liu J, Yu L. 2017. Absorption, distribution, metabolism and excretion of 3-MCPD 1-monopalmitate after oral administration in rats. J Agric Food Chem. 65(12):2609–2614. doi:10.1021/acs.jafc.7b00639
  • Gates LA, Lu D, Peterson LA. 2012. Trapping of cis-2-butene-1, 4-dial to measure furan metabolism in human liver microsomes by cytochrome P450 enzymes. Drug Metab Dispos. 40(3):596–601. doi:10.1124/dmd.111.043679
  • Gates LA, Phillips MB, Matter BA, Peterson LA. 2014. Comparative metabolism of furan in rodent and human cryopreserved hepatocytes. Drug Metab Dispos. 42(7):1132–1136. doi:10.1124/dmd.114.057794
  • Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. 2020. MicroRNA signature in renal cell carcinoma. Front Oncol. 10(November):596359. doi:10.3389/fonc.2020.596359
  • Han Y, Meng F, Venter J, Wu N, Wan Y, Standeford H, Francis H, Meininger C, Greene J, Trzeciakowski JP, et al. 2016. MiR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. J Hepatol. 64(6):1295–1304. doi:10.1016/j.jhep.2016.02.024
  • Han YUL, Yin J, Cong JJUN. 2018. Downregulation of microRNA ‑ 193 ‑ 3p inhibits the progression of intrahepatic cholangiocarcinoma cells by upregulating TGFBR3. Exp Ther Med. 15(5):4508–4514. doi:10.3892/etm.2018.5958
  • Harris SL, Levine AJ. 2005. The p53 pathway : positive and negative feedback loops. Oncogene. 24(17):2899–2908. doi:10.1038/sj.onc.1208615
  • Harvey KF, Zhang X, Thomas DM. 2013. The Hippo pathway and human cancer. Nat Rev Cancer. 13(4):246–257. doi:10.1038/nrc3458
  • He Y, Liu J, Wang Y, Zhu X, Fan Z, Li C, Yin H, Liu Y. 2019. Role of miR-486-5p in regulating renal cell carcinoma cell proliferation and apoptosis via TGF-β–activated kinase 1. J Cell Biochem. 120(3):2954–2963. doi:10.1002/jcb.26900
  • Hickling KC, Hitchcock JM, Oreffo V, Mally A, Hammond TG, Evans JG, Chipman JK. 2010. Evidence of oxidative stress and associated DNA damage, increased proliferative drive, and altered gene expression in rat liver produced by the cholangiocarcinogenic agent Furan. Toxicol Pathol. 38(2):230–243. doi:10.1177/0192623309357946
  • Huang G, Xue J, Sun X, Wang J, Yu L. 2018. Necroptosis in 3-chloro-1, 2-propanediol (3-MCPD)-dipalmitate-induced acute kidney injury in vivo and its repression by miR-223-3p. Toxicology [Internet]. 406-407(May):33–43. doi:10.1016/j.tox.2018.05.015
  • Huang J, Wang X, Wen G, Ren Y. 2019. MiRNA‑205‑5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep. 42(5):1677–1688. doi:10.3892/or.2019.7307
  • IARC. 1995. Dry cleaning, some chlorinated solvents and other industrial chemicals.
  • IARC. 2012. Some chemicals present in industrial and consumer products, food and drinking-water.
  • Jędrkiewicz R, Głowacz A, Gromadzka J, Namieśnik J. 2016. Determination of 3-MCPD and 2-MCPD esters in edible oils, fi sh oils and lipid fractions of margarines available on Polish market. Food Control. 59:487–492. doi:10.1016/j.foodcont.2015.05.039
  • Ji J, Zhu P, Sun C, Sun J, An L, Zhang Y, Sun X. 2017. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells. J Toxicol Sci. 42(1):43–52. doi:10.2131/jts.42.43
  • Jin C, Zhong Y, Han J, Zhu J, Liu Q, Sun D, Xia X, Peng X. 2020. Drp1-mediated mitochondrial fission induced autophagy attenuates cell apoptosis caused by 3-chlorpropane-1, 2-diol in HEK293 cells. Food Chem Toxicol. 145:111740. doi:10.1016/j.fct.2020.111740
  • Kamikata K, Vicente E, Arisseto-Bragotto AP, Miguel AMR, de O, Milani RF, Tfouni SAV. 2019. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control. 95:135–141. doi:10.1016/j.foodcont.2018.07.051
  • Kaze N, Watanabe Y, Sato H, Murota K, Kotaniguchi M, Yamamoto H, Inui H, Kitamura S. 2016. Estimation of the intestinal absorption and metabolism behaviors of 2- and 3-monochloropropanediol esters. Lipids. 51(8):913–922. doi:10.1007/s11745-016-4143-z
  • Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O' Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, et al. 2019. Furan and methylfurans in foods: an update on occurrence, mitigation, and risk assessment. Compr Rev Food Sci Food Saf. 18(3):738–752. doi:10.1111/1541-4337.12433
  • Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, Pineau P, Marchio A, Palatini J, Suh SS, et al. 2011. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 208(5):875–883. doi:10.1084/jem.20110235
  • Kliemann N, Al Nahas A, Vamos EP, Touvier M, Kesse-Guyot E, Gunter MJ, Millett C, Huybrechts I. 2022. Ultra-processed foods and cancer risk: from global food systems to individual exposures and mechanisms. Br J Cancer. 127(1):14–20. doi:10.1038/s41416-022-01749-y
  • Kowalik CG, Palmer DA, Sullivan TB, Teebagy PA, Dugan JM, Libertino JA, Burks EJ, Canes D, Rieger-Christ KM. 2017. Profiling microRNA from nephrectomy and biopsy specimens: predictors of progression and survival in clear cell renal cell carcinoma. BJU Int. 120(3):428–440. doi:10.1111/bju.13886
  • Lee NH, Kim SJ, Hyun J. 2021. Micrornas regulating hippo-yap signaling in liver cancer. Biomedicines. 9(4):347. doi:10.3390/biomedicines9040347
  • Liu M, Huang G, Wang TTY, Sun X, Yu LL. 2016. 3-MCPD 1-palmitate induced tubular cell apoptosis In Vivo via JNK/p53 pathways. Toxicol Sci. 151(1):181–192. doi:10.1093/toxsci/kfw033
  • Liu PW, Li CI, Huang KC, Liu CS, Chen HL, Lee CC, Chiou YY, Chen RJ. 2021. 3-MCPD and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via NLRP3 inflammasome activation, necroptosis, and autophagic cell death. J Hazard Mater. 405:124241. doi:10.1016/j.jhazmat.2020.124241
  • Maroni L, Pierantonelli I, Banales JM, Benedetti A, Marzioni M. 2012. The significance of genetics for cholangiocarcinoma development. Ann Transl Med. 1:30–42.
  • National Toxicology Program. 1993. Toxicology and carcinogenesis studies of furan in F344/N and B6C3F mice.
  • Ozaki T, Nakagawara A. 2011. Role of p53 in cell death and human cancers. Cancers (Basel)). 3(1):994–1013. doi:10.3390/cancers3010994
  • Peng F, Jiang J, Yu Y, Tian R, Guo X, Li X, Shen M, Xu M, Zhu F, Shi C, et al. 2013. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer. 109(12):3092–3104. doi:10.1038/bjc.2013.655
  • Peng X, Gan J, Wang Q, Shi Z, Xia X. 2016. 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology. 372:1–11. doi:10.1016/j.tox.2016.09.017
  • Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, Yi B, Zhang YJ. 2013. MiR-204 Inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem. 32(5):1331–1341. doi:10.1159/000354531
  • Rahn AKK, Yaylayan VA. 2011. What do we know about the molecular mechanism of 3-MCPD ester formation? Eur J Lipid Sci Technol. 113(3):323–329. doi:10.1002/ejlt.201000310
  • Rather IA, Koh WY, Paek WK, Lim J. 2017. The sources of chemical contaminants in food and their health implications. Front Pharmacol. 8:830. (NOV). doi:10.3389/fphar.2017.00830
  • Roy S, Roy S, Rana A, Akhter Y, Hande MP, Banerjee B. 2018. The role of p38 MAPK pathway in p53 compromised state and telomere mediated DNA damage response. Mutat Res Genet Toxicol Environ Mutagen. 836(Pt A):89–97. doi:10.1016/j.mrgentox.2018.05.018
  • Sawada S, Oberemm A, Buhrke T, Meckert C, Rozycki C, Braeuning A, Lampen A. 2015. Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate toxicity in rat testis. Food Chem Toxicol. 83:84–92. doi:10.1016/j.fct.2015.06.002
  • Schultrich K, Frenzel F, Oberemm A, Buhrke T, Braeuning A, Lampen A. 2017. Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat. Arch Toxicol. 91(9):3145–3155. doi:10.1007/s00204-016-1927-0
  • Schultrich K, Henderson CJ, Braeuning A, Buhrke T. 2020. Correlation between 3-MCPD-induced organ toxicity and oxidative stress response in male mice. Food Chem Toxicol. 136:110957. doi:10.1016/j.fct.2019.110957
  • Schultrich K, Henderson CJ, Buhrke T, Braeuning A. 2020. Effects of 2-MCPD on oxidative stress in different organs of male mice. Food Chem Toxicol. 142:111459. doi:10.1016/j.fct.2020.111459
  • Shi L, Wang M, Li H, You P. 2021. Micrornas in body fluids: a more promising biomarker for clear cell renal cell carcinoma. Cancer Manag Res. 13:7663–7675. doi:10.2147/CMAR.S330881
  • Shi T, Morishita A, Kobara H, Masaki T. 2021. The role of microRNAs in cholangiocarcinoma. IJMS. 22(14):7627. doi:10.3390/ijms22147627
  • Suárez B, Solé C, Márquez M, Nanetti F, Lawrie CH. 2022. Circulating MicroRNAs as cancer biomarkers in liquid biopsies. Adv Exp Med Biol. 1385[place unknown]; 23–73.
  • Sugihara T, Isomoto H, Gores G, Smoot R. 2019. YAP and the Hippo pathway in cholangiocarcinoma. J Gastroenterol. 54(6):485–491. doi:10.1007/s00535-019-01563-z
  • Sugimachi K, Nishio M, Aishima S, Kuroda Y, Iguchi T, Komatsu H, Hirata H, Sakimura S, Eguchi H, Bekki Y, et al. 2017. Altered expression of hippo signaling pathway molecules in intrahepatic cholangiocarcinoma. Oncology. 93(1):67–74. doi:10.1159/000463390
  • Svejkovská B, Novotný O, Divinová V, Réblová Z, Doležal M, Velíšek J. 2004. Esters of 3-chloropropane-1,2-diol in foodstuffs. Czech J Food Sci. 22 (5):190–196. doi:10.17221/3423-CJFS
  • Taylor CA, Zheng Q, Liu Z, Thompson JE. 2013. Role of p38 and JNK MAPK signaling pathways and tumor suppressor p53 on induction of apoptosis in response to Ad-eIF5A1 in A549 lung cancer cells. Mol Cancer. 12(1):35. doi:10.1186/1476-4598-12-35
  • Thakur S, Ghosh S. 2022. Recent advances in transcriptomic biomarker detection for cancer. In: Transcriptome Profiling: Progress and Prospects. Academic Press; p. 453–478. doi:10.1016/B978-0-323-91810-7.00007-8
  • Tivanello R, Capristo M, Vicente E, Ferrari R, Sampaio K, Arisseto A. 2020. Effects of deodorization temperature and time on the formation of 3-MCPD, 2-MCPD, and glycidyl esters and physicochemical changes of palm oil. J Food Sci. 85(7):2255–2260. doi:10.1111/1750-3841.15304
  • Toden S, Goel A. 2022. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br J Cancer. 126(3):351–360. doi:10.1038/s41416-021-01672-8
  • Tumolo MR, Panico A, Donno AD, Mincarone P, Leo CG, Guarino R, Bagordo F, Serio F, Idolo A, Grassi T, et al. 2022. The expression of microRNAs and exposure to environmental contaminants related to human health:a review. Int J Environ Health Res. 32(2):332–354. doi:10.1080/09603123.2020.1757043
  • Vavougios G, Zarogiannis SG, Doskas T. 2018. The putative interplay between DJ-1/NRF2 and Dimethyl Fumarate: a potentially important pharmacological target. Mult Scler Relat Disord. 21:88–91. doi:10.1016/j.msard.2018.02.027
  • Velísek J, Davidek J, Hajslova J, Kubelka V, Janicek G, Mankova B. 1978. Chlorohydrins in protein hydrolysates. Z Lebensm Unters Forsch. 167(4):241–244. doi:10.1007/BF01135595
  • Wang J, Xie C, Pan S, Liang Y, Han J, Lan Y, Sun J, Li K, Sun B, Yang G, et al. 2016. N-myc downstream-regulated gene 2 inhibits human cholangiocarcinoma progression and is regulated by leukemia inhibitory factor/MicroRNA-181c negative feedback pathway. Hepatology. 64(5):1606–1622. doi:10.1002/hep.28781
  • Williams GM, Arisseto AP, Baines J, DiNovi M, Feeley M, Schlatter J, Slob W, Toledo MCF, Vavasour E. 2011. Furan. In: Safety evaluation of certain contaminants in food. Geneva: World Health Organization; p. 487–603. doi:10.1016/B978-0-12-386454-3.00508-X
  • Wu H, Liu Y, Jiang X, Li W, Guo G, Gong J, Ding X. 2016. Clinicopathological and prognostic significance of Yes-associated protein expression in hepatocellular carcinoma and hepatic cholangiocarcinoma. Tumour Biol. 37(10):13499–13508. doi:10.1007/s13277-016-5211-y
  • Xu M, Chen L, Li J, Wu H, Xia Q, Kong X. 2018. Emerging roles of DJ-1 in liver diseases through regulation of oxidative stress and immune response*. Liver Res. 2(2):87–91. doi:10.1016/j.livres.2018.06.001
  • Yuan Y, Zhang A, Qi J, Wang H, Liu X, Zhao M, Duan S, Huang Z, Zhang C, Wu L, et al. 2018. p53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction. Am J Physiol Ren Physiol. 314(5):F798–F808. doi:10.1152/ajprenal.00055.2017
  • Zelinková Z, Svejkovská B, Velíšek M, Doležal M. 2006. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam. 23(12):1290–1298. doi:10.1080/02652030600887628
  • Zheng B, Jeong S, Zhu Y, Chen L, Xia Q. 2017. miRNA and lncRNA as biomarkers in cholangiocarcinoma(CCA). Oncotarget. 8(59):100819–100830. doi:10.18632/oncotarget.19044

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.