782
Views
0
CrossRef citations to date
0
Altmetric
Articles

Occurrence of resorcyclic acid lactones in porcine urine: discrimination between illegal use and contamination

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 838-851 | Received 06 Apr 2023, Accepted 29 May 2023, Published online: 16 Jun 2023

References

  • Arrizabalaga Larrañaga A, Groot MJ, Blokland MH, Barbu IM, Smits NGE, Sterk SS. 2022. EURL Reflection paper 2.0: natural growth promoting substances in biological samples: presence - and formation – of hormones and other growth promoting substances in food producing animals. Wageningen Food Safety Research.
  • Blokland MH, Sterk SS, Stephany RW, Launay FM, Kennedy DG, van Ginkel LA. 2006. Determination of resorcylic acid lactones in biological samples by GC–MS. Discrimination between illegal use and contamination with fusarium toxins. Anal Bioanal Chem. 384(5):1221–1227. doi: 10.1007/s00216-005-0274-4.
  • Canton L, Lanusse C, Moreno L. 2021. Rational pharmacotherapy in infectious diseases: issues related to drug residues in edible animal tissues. Animals. 11(10):2878. doi: 10.3390/ani11102878.
  • Carnevale RA. 1992. Illegal residues in meat and poultry. Consumers’ Research Magazine. p. 33. +.
  • Catteuw A, Broekaert N, De Baere S, Lauwers M, Gasthuys E, Huybrechts B, Callebaut A, Ivanova L, Uhlig S, De Boevre M, et al. 2019. Insights into in vivo absolute oral bioavailability, biotransformation, and toxicokinetics of zearalenone, α-zearalenol, β-zearalenol, zearalenone-14-glucoside, and zearalenone-14-sulfate in pigs. J Agric Food Chem. 67(12):3448–3458. doi: 10.1021/Acs.jafc.8b05838.
  • Commission Implementing Regulation (EU) 2021/808. on the performance of analytical methods for residues of pharmacologically active substances used in food-producing animals and on the interpretation of results as well as on the methods to be used for sampling and repealing Decisions 2002/657/EC and 98/179/EC.
  • Commission Delegated Regulation (EU) 2022/1644 of 7 July 2022 supplementing Regulation (EU) 2017/625 of the European Parliament and of the Council with specific requirements for the performance of official controls on he use of pharmacologically active substances authorised as veterinary medicinal products or as feed additives and of prohibited or unauthorised pharmacologically active substances and residues thereof
  • Dänicke S, Keese C, Meyer U, Starke A, Kinoshita A, Rehage J. 2014. Zearalenone (ZEN) metabolism and residue concentrations in physiological specimens of dairy cows exposed long-term to ZEN-contaminated diets differing in concentrate feed proportions. Arch Anim Nutr. 68(6):492–506.
  • Dusi G, Bozzoni E, Assini W, Tognoli N, Gasparini M, Ferretti E. 2009. Confirmatory method for the determination of resorcylic acid lactones in urine sample using immunoaffinity cleanup and liquid chromatography–tandem mass spectrometry. Anal Chim Acta. 637(1-2):47–54.
  • Echarte JM, Fernández DC, Chiacchio CA, Torres Leedham VM. 2014. Comparison of a validated LC/MS/MS method with a validated GC/MS method for the analysis of zeranol and its related mycotoxin residues in bovine urine samples collected during argentina’s residue monitoring control program (2005–2012). J AOAC Int. 97(5):1470–1475.
  • Geis-Asteggiante L, Lehotay SJ, Lightfield AR, Dutko T, Ng C, Bluhm L. 2012. Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1258:43–54.
  • Guidance E. 2021. EURL guidance on minimum method performance requirements (MMPRs) for specific pharmacologically active substances in specific animal matrices.
  • Han Z, Ren Y, Zhou H, Luan L, Cai Z, Wu Y. 2011. A rapid method for simultaneous determination of zearalenone, α-zearalenol, β-zearalenol, zearalanone, α-zearalanol and β-zearalanol in traditional Chinese medicines by ultra-high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B. 879(5-6):411–420. doi: 10.1016/j.jchromb.2010.12.028.
  • Hird SJ, Lau BPY, Schuhmacher R, Krska R. 2014. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. Trac, Trends Anal Chem. 59:59–72. doi: 10.1016/j.trac.2014.04.005.
  • Huang LC, Zheng N, Zheng BQ, Wen F, Cheng JB, Han RW, Xu XM, Li SL, Wang JQ. 2014. Simultaneous determination of aflatoxin M1, ochratoxin A, zearalenone and α-zearalenol in milk by UHPLC–MS/MS. Food Chem. 146:242–249. doi: 10.1016/j.foodchem.2013.09.047.
  • Jiang Y, Ogunade IM, Vyas D, Adesogan AT. 2021. Aflatoxin in dairy cows: toxicity, occurrence in feedstuffs and milk and dietary mitigation strategies. Toxins13(4):283. doi: 10.3390/toxins13040283.
  • Jongedijk E, Fifeik M, Arrizabalaga-Larrañaga A, Polzer J, Blokland M, Sterk S. 2023. Use of high-resolution mass spectrometry for veterinary drug multi-residue analysis. Food Control. 145:109488. doi: 10.1016/j.foodcont.2022.109488.
  • Kagera I, Kahenya P, Mutua F, Anyango G, Kyallo F, Grace D, Lindahl J. 2019. Status of aflatoxin contamination in cow milk produced in smallholder dairy farms in urban and peri-urban areas of Nairobi County: a case study of Kasarani sub county. Kenya. Infection Ecology & Epidemiology. 9(1):1547095. doi: 10.1080/20008686.2018.1547095.
  • Kennedy DG, Hewitt SA, McEvoy JDG, Currie JW, Cannavan A, Blanchflower WJ, Elliot CT. 1998. Zeranol is formed from Fusarium spp. toxins in cattle in vivo. Food Additives & Contaminants. 15(4):393–400. doi: 10.1080/02652039809374658.
  • Kleinova M, Zöllner P, Kahlbacher H, Hochsteiner W, Lindner W. 2002. Metabolic profiles of the mycotoxin zearalenone and of the growth promoter zeranol in urine, liver, and muscle of heifers. J Agric Food Chem. 50(17):4769–4776. doi: 10.1021/jf020160p.
  • Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, et al. 2017. Risks for animal health related to the presence of zearalenone and its modified forms in feed. Efsa J. 15(7):e04851. eng.
  • Kumar P, Rúbies A, Centrich F, Granados M, Cortés-Francisco N, Caixach J, Companyó R. 2013. Targeted analysis with benchtop quadrupole–orbitrap hybrid mass spectrometer: application to determination of synthetic hormones in animal urine. Anal Chim Acta. 780:65–73.
  • Launay FM, Ribeiro L, Alves P, Vozikis V, Tsitsamis S, Alfredsson G, Sterk SS, Blokland M, Iitia A, Lövgren T, et al. 2004. Prevalence of zeranol, taleranol and Fusarium spp. toxins in urine: implications for the control of zeranol abuse in the European Union. Food Additives & Contaminants. 21(9):833–839. doi: 10.1080/02652030400002121.
  • Lauwers M, De Baere S, Letor B, Rychlik M, Croubels S, Devreese M. 2019. Multi LC-MS/MS and LC-HRMS methods for determination of 24 mycotoxins including major phase i and ii biomarker metabolites in biological matrices from pigs and broiler chickens. Toxins 11(3):171. doi: 10.3390/toxins11030171.
  • Lega F, Angeletti R, Stella R, Rigoni L, Biancotto G, Giusepponi D, Moretti S, Saluti G, Galarini R. 2017. Abuse of anabolic agents in beef cattle: could bile be a possible alternative matrix? Food Chem. 229:188–197. doi: 10.1016/j.foodchem.2017.02.069.
  • Li Z, Xiong J, Fantke P. 2022. Screening of pesticide distributions in foods of animal origin: a matrix-based approach for biotransfer factor modeling of grazing mammals. Environ Sci Process Impacts. 24(4):609–624. doi: 10.1039/D1EM00454A
  • Liu J, Applegate T. 2020. Zearalenone (ZEN) in livestock and poultry: dose, toxicokinetics, toxicity and estrogenicity. Toxins. 12(6):377. doi: 10.3390/toxins12060377.
  • Matraszek-Zuchowska I, Wozniak B, Posyniak A. 2019. Resorcylic acid lactones in urine samples of slaughtered animals resulting from potential feed contamination with zearalenone. Food Additives & Contaminants: part B. 12(2):105–115. doi: 10.1080/19393210.2019.1566933.
  • Rana MS, Lee SY, Kang HJ, Hur SJ. 2019. Reducing veterinary drug residues in animal products: a review. Food Sci Anim Resour. 39(5):687–703. eng. doi: 10.5851/kosfa.2019.e65.
  • Rechsteiner D, Schrade S, Zähner M, Müller M, Hollender J, Bucheli TD. 2020. Occurrence and fate of natural estrogens in swiss cattle and pig slurry. J Agric Food Chem. 68(20):5545–5554. doi: 10.1021/acs.jafc.0c00858.
  • Widiastuti R, Anastasia Y. 2020. Zeranol residue detected by hplc in bovine meet from three different cities in Java island. Trop Anim Sci J. 43(3):270–275. doi: 10.5398/tasj.2020.43.3.270.
  • Wozniak B, Zuchowska IM, Zmudzki J. 2013. Determination of stilbenes and resorcylic acid lactones in bovine, porcine and poultry muscle tissue by liquid chromatography–negative ion electrospray mass spectrometry and QuEChERS for sample preparation. J Chromatogr B. 940:15–23. doi: 10.1016/j.jchromb.2013.09.018.
  • Xu P, Zhou X, Xu D, Xiang Y, Ling W, Chen M. 2018. Contamination and risk assessment of estrogens in livestock manure: a case study in Jiangsu province, China. Int J Environ Res Public Health. 15(1)
  • Xu R, Kiarie EG, Yiannikouris A, Sun L, Karrow NA. 2022. Nutritional impact of mycotoxins in food animal production and strategies for mitigation. J Animal Sci Biotechnol. 13(1):69. doi: 10.1186/s40104-022-00714-2.
  • Zöllner P, Jodlbauer J, Kleinova M, Kahlbacher H, Kuhn T, Hochsteiner W, Lindner W. 2002. Concentration levels of zearalenone and its metabolites in urine, muscle tissue, and liver samples of pigs fed with mycotoxin-contaminated oats. J Agric Food Chem. 50(9):2494–2501. doi: 10.1021/jf0113631.
  • Zöllner P, Leitner A, Jodlbauer J, Mayer BX, Linder W. 2003. Improving LC-MS/MS analyses in complex food matrices, part II – mass spectrometry. LC GC Europe. 16:354–362.