154
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quantitative analysis and survey of 9,10-anthraquinone contaminant in Chinese Liupao tea

, , , , , & show all
Pages 878-889 | Received 03 Apr 2023, Accepted 11 Jun 2023, Published online: 28 Jun 2023

References

  • Anggraini T, Nanda RF, Syukri D., Neswati  2020. Identification of 9,10-anthraquinone contamination during black and green tea processing in indonesia. Food Chem. 327:127092. doi: 10.1016/j.foodchem.2020.127092.
  • Chen B, Xin-Yue L, Hong-Jun PU, You-Hua C, Jiang DH, Gao XL. 2018. Variation of aromatic components during Pu’er tea fermentation process of different raw materials. J Food Saf Qual. 9(2):284–293.
  • Cheng L, Wang Y, Zhang J, Zhu J, Liu P, Xu L, Wei K, Zhou H, Peng L, Zhang J, et al. 2021. Dynamic changes of metabolic profile and taste quality during the long-term ageing of qingzhuan tea: the impact of storage age. Food Chem. 359(11):129953. doi: 10.1016/j.foodchem.2021.129953.
  • CIQ 2017. Industry standard of entry-exit Inspection and Quarantine of the People’s Republic of China.SN-T-4777-2017. Determination of anthraquinone residues in tea for export-GC-MS/MS method. Beijing (China): Standards Press of China.
  • [EFSA] European Food Safety Authority. 2012. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for anthraquinone according to Article 12 of Regulation (EC) No 396/2005. EFSA J. 10(6):2761. doi: 10.2903/j.efsa.2012.2761.
  • [EFSA] European Food Safety Authority. 2019. The 2017 European Union report on pesticide residues in food. EFSA J. 17(6):e05743. doi: 10.2903/j.efsa.2019.5743.
  • [EFSA] European Food Safety Authority. 2020. National summary reports on pesticide residue analysis performed in 2018. EFSA Support Publ. 17(4):64–79. doi: 10.2903/sp.efsa.2020.EN-1814.
  • [EU] European Union. 2014. Commission Regulation (EU) N0 1146/2014 amending Annexes II, III, IV and V to regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for Anthraquinone, benfluralin, bentazone, bromoxynil, chlorothalonil, famoxadone, imazamox, methylbromide, propanil and sulphuric acid in or on certain products. http://eur-lex.eur opa.eu/legal-content/EN/TXT/PDF/?rui=CELEX:32014R1146&qid=159554455 7309&from=EN/.
  • European Commission. 2019. EU Reference Laboratories for Residues of Pesticides: Document No SANTE/12682/2019. https://www.eurlpesticides.eu/userfifiles/fifile/EurlALL/AqcGuidance_SANTE_2019_12682.pdf.
  • Faraji M, Noorbakhsh R, Shafieyan H, Ramezani M. 2018. Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modifed QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chem. 240:634–641. doi: 10.1016/j.foodchem.2017.08.012.
  • Gan Y, Qin M, Cheng L, He J, Zhao J. 2017. Determination of 9,10-anthraquinone in tea by gel permeation chromatography gas chromatography-tandem mass spectrometry. Chin J Health Lab Tec. 27:1525–1528.
  • Gao YZ, Zhang Y, Liu J, Kong HL. 2013. Metabolism and subcellula distribution of anthracene in tall fescue (Festuca arundinacea Schreb). Plant Soil. 365(1-2):171–182. doi: 10.1007/s11104-012-1386-1.
  • Ghani SB, Ahmad AH. 2016. QuEChERS method combined with GC–MS for pesticide residues determination in water. J Anal Chem. 71:508–512. doi:10.1134/S1061934816050117.
  • He Z, Wei B, Wei Y, Zhu Z, He J, Feng M, Zhang K, Qin X. 2017. Determination of anthraquinone in tea by GC-MS/MS. Chem Ana Meter. 26:18–21. doi: 10.3969/j.issn.1008-6145.2017.03.004.
  • Huang S, Chen H, Teng J, Wu Z, Huang L, Wei B, Xia N. 2022. Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from Liupao tea and green tea in vivo. J Food Sci. 87(9):4203–4220. doi: 10.1111/1750-3841.16274.
  • Kanrar B, Mandal S, Bhattacharyya A. 2010. Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1217 (12):1926–1933. doi: 10.1016/j.chroma.2010.01.062.
  • Kartasasmita RE, Kurniawan F, Amelia T, Dewi CM, Harmoko H, Pratama Y. 2020. Determination of anthraquinone in some Indonesian black tea and its predicted risk characterization. ACS Omega. 5(32):20162–20169. doi: 10.1021/acsomega.0c01812.
  • Li LJ, Ho SSH, Feng B, Xu H, Wang T, Wu R, Huang W, Qu L, Wang Q, Cao J. 2019. Characterization of particulate-bound polycyclic aromatic compounds (PACs) and their oxidations in heavy polluted atmosphere: a case study in urban Beijing, China during haze events. Sci Total Environ. 660:1392–1402. doi: 10.1016/j.scitotenv.2019.01.078.
  • Lyu C, Chen C, Ge F, Liu D, Zhao S, Chen D. 2013. A preliminary metagenomic study of puer tea during pile fermentation. J Sci Food Agric. 93(11):2870–2870. doi: 10.1002/jsfa.6242.
  • Manav ÖG, Dinç-Zor Ş, Alpdoğan G. 2019. Optimization of a modifed QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC-MS. Microchem J. 144:124–129. doi: 10.1016/j.microc.2018.08.056.
  • Mao Y, Wei B, Teng J, Xia N, Zhao M, Huang L, Ye Y. 2018. Polysaccharides from chinese liupao dark tea and their protective effect against hyperlipidemia. Int J Food Sci Technol. 53(3):599–607. doi: 10.1111/ijfs.2018.53.issue-310.1111/ijfs.13633.
  • Mo H, Zhang H, Zhu Y, Li Y. 2008. Antimicrobial activity of the indigenously microbial fermented Fuzhuan brick-tea. J Biotechnol. 136: s722. doi: 10.1016/j.jbiotec.2008.07.1719.
  • Pang B, Huang L, Teng J, Zhang J, Xia N, Wei B. 2021. Effect of pile fermentation on the cells of Chinese Liupao tea: the first record of cell wall of Liupao tea on transmission electron microscope. Food Chem. 361:130034. doi: 10.1016/j.foodchem.2021.130034.
  • Qin H, Huang L, Teng J, Wei B, Xia N, Ye Y. 2021. Purification, characterization, and bioactivity of liupao tea polysaccharides before and after fermentation. Food Chem. 353:129419–129428. doi: 10.1016/j.foodchem.2021.129419.
  • [SAC] Standardization Administration of the People’s Republic of China. 2017. GB-T 35656-2017. Guideline for verification and validation of chemical analysis method and internal quality control – Chromatography. Beijing (China): Standards Press of China.
  • SANTE EC. 2019. Guidance document on method validation and quality control procedures for pesticide residues analysis in food and feed. SANTE/126823/201. European Commission.
  • SANTE/EU. 2015. Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. European Commission SANTE/11813/2017. p. 1–46. https://ec.europa.eu/food/sites/food/fifiles/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf.
  • Shao L, Wang G, Guo M, Yang L, Jiang D, Li R, Zhu J. 2020. Determination of 9, 10 –anthraquinone in tea consumed in Shandong province of China. Chem Pap. 74(12):4453–4460. doi: 10.1007/s11696-020-01254-7.
  • Sousa ET, Cardoso MP, Silva LA, de Andrade JB. 2015. Direct determination of quinones in fne atmospheric particulate matter by GC-MS. Microchem J. 118:26–31. doi: 10.1016/j.microc.2014.07.013.
  • Souza KF, Carvalho LRF, Allen AG, Cardoso AA. 2014. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxyPAH compounds in atmospheric particulate matter of a sugar cane burning region. Atmos Environ. 83:193–201. doi: 10.1016/j.atmosenv.2013.11.007.
  • Syukri D, Thammawong M, Naznin HA, Kuroki S, Tsuta M, Yoshida M, Nakano K. 2018. Identification of a freshness marker metabolite in stored soybean sprouts by comprehensive mass-spectrometric analysis of carbonyl compounds. Food Chem. 269:588–594. doi: 10.1016/j.foodchem.2018.07.036.
  • Tao C, Hong J. 2019. Determination of 9, 10-anthraquinone in tea from Fujian Province from 2017 to 2018. Straits J Prev Med. 25(4):63–65.
  • Wang X, Zhou L, Luo F, Zhang X, Sun H, Yang M, Lou Z, Chen Z. 2018. 9,10-Anthraquinone deposit in tea plantation might be one of the reasons for contamination in tea. Food Chem. 244:254–259. doi: 10.1016/j.foodchem.2017.09.123.
  • Wang Y, Dong Y-J, Li Z-M, Deng L-G, Guo C-Y, Zhang S-Q, Li D-P, Zhao S-C. 2016. Fast determination of multi-mycotoxins in corn by dispersive solid-phase extraction coupled with ultra-performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry. J.Integr.Agric. 15(7):1656–1666. doi: 10.1016/S2095-3119(15)61287-4.
  • Wang J, Zhang J, Chen Y, Yu L, Teng J, Xia N, Wei B, Xiao S, Huang L. 2021. The relationship between microbial dynamics and dominant chemical components during Liupao tea processing. Food Biosci. 43:101315. doi: 10.1016/j.fbio.2021.101315.
  • Wei Y, Han I, Hu M, Shao M, Zhang J, Tang X. 2010. Personal exposure to particulate PAHs and anthraquinone and oxidative DNA damages in humans. Chemosphere. 81(10):1280–1285. doi: 10.1016/j.chemosphere.2010.08.055.
  • Wietzoreck M, Bandowe BAM, Hofman J, Martiník J, Nežiková B, Kukučka P, Přibylová P, Lammel G. 2022. Nitro-and oxy-PAHs in grassland soils from decadelong sampling in central Europe. Environ Geochem Health. 44(8):2743–2765. doi: 10.1007/s10653-021-01066-y.
  • Xie W, Huang C, Chen L, Shen T, Hong D, Lou C, Xie Y, He J, Hou J, Deng X, et al. 2017. Determination of anthraquinone residues in tea samples by isotope dilution-gas chromatography tandem mass spectrometry. Chinese J Ana Lab. 36:177–181. doi: 10.13595/j.cnki.issn1000-0720.2017.0040.
  • Yang M, Luo F, Zhang X, Wang X, Sun H, Lou Z, Zhou L, Chen Z. 2022. Uptake, translocation, and metabolism of anthracene in tea plants. Sci Total Environ. 821:152905. doi: 10.1016/j.scitotenv.2021.152905.
  • Yang S-W, Yun C-I, Moon J-Y, Lee J-G, Kim Y-J. 2022. Analytical method development and risk characterisation of anthraquinone in various types of tea. Food Control. 137:108923. doi: 10.1016/j.foodcont.2022.108923.
  • Yusiasih R, Pitoi MM, Ariyani M, Koesmawati TA, Maulana H. 2019. Anthraquinone in Indonesian infusion tea: analysis by HPLC–UV and risk assessment. Chem Biol Technol Agric. 6(1). doi: 10.1186/s40538-019-0155-2.
  • Zhong J, Chen N, Huang S, Fan X, Zhang Y, Ren D, Yi L. 2020. Chemical profiling and discrimination of green tea and Pu-erh raw tea based on UPLC-QOrbitrap-MS/MS and chemometrics. Food Chem. 326:126760. doi: 10.1016/j.foodchem.2020.126760.
  • Zhou H, Liu N, Yan Z, Yu D, Wang L, Wang K, Wei X, Wu A. 2021. Development and validation of the one-step purification method coupled to LC-MS/MS for simultaneous determination of four aflatoxins in fermented tea. Food Chem. 354:302–309. doi: 10.1016/j.foodchem.2021.129497.
  • Zhu M, Li N, Zhou F, Ouyang J, Lu D, Xu W, Li J, Lin , Zhang Z, Xiao J, Wang K, et al. 2020. Microbial bioconversion of the chemical components in dark tea. Food Chem. 312:126043–126103. doi: 10.1016/j.foodchem.2019.126043.
  • Zou M, Dong Q, Huang Y, Su E. 2019. Submerged liquid fermentation of raw dark tea by Eurotium cristatum Chinese. J Bioproc Eng. 17(4):409–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.