249
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterisation of the risk associated with chronic lifetime exposure to mixture of chemical hazards: case study of trace elements

, & ORCID Icon
Pages 951-970 | Received 02 Apr 2023, Accepted 21 Jun 2023, Published online: 10 Jul 2023

References

  • [AFSSA] French Food Safety Agency. 2006. Etude des consommations alimentaires de produits de la mer et imprégnation aux éléments traces, polluants et oméga 3 (CALIPSO) [Study of consumption of seafood and body burden to trace elements, pollutants and omega 3 (CALIPSO)] [Internet]. Maisons-Alfort, France. https://www.anses.fr/fr/system/files/PASER-Ra-Calipso.pdf
  • [ANSES] French Agency for Food, Environmental and Occupational Health and Safety. 2011. Étude de l’alimentation totale française 2 (EAT 2) [Second French Total Diet Study (TDS2)] [Internet]. Maisons-Alfort: ANSES. https://www.anses.fr/fr/system/files/PASER2006sa0361.pdf
  • [ANSES] French Agency for Food, Environmental and Occupational Health and Safety. 2012. Effets sanitaires liés à la pollution générée par les feux de végétation à l’air libre. Etat des connaissances relatif aux incendies de végétation, aux brûlages agricoles, et aux brûlages des déchets verts de jardin [Health effects related to pollution from open-air wildfires. In: State of knowledge on wildland fires, agricultural burning, and burning of garden waste] [Internet]. Maisons-Alfort, France: ANSES. https://www.anses.fr/fr/system/files/AIR2010sa0183Ra.pdf
  • [ANSES] French Agency for Food, Environmental and Occupational Health and Safety. 2016. Etude de l’alimentation totale infantile : avis de l’Anses, synthèse et conclusions [Infant Total Diet Study : anses’ opinion, synthesis and conclusions]. Maisons-Alfort: ANSES. https://www.anses.fr/fr/system/files/ERCA2010SA0317Ra.pdf
  • [ANSES] French Agency for Food, Environmental and Occupational Health and Safety. 2017. Valeurs toxicologiques de référence. Guide d’élaboration de l’Anses [Toxicological Reference Values. Guide for the development of Anses] [Internet]. Maisons-Alfort: ANSES. https://www.anses.fr/fr/system/files/SUBSTANCES2017SA0016Ra.pdf
  • Atmo Normandie. 2021. Incendie Lubrizol et NL Logistique : bilan des mesures de polluants et d’odeurs dans l’air ambiant et les retombées atmosphériques [Lubrizol and NL Logistics Fire: assessment of measurements of pollutants and odours in the ambient air and atmospheric deposition]. Rouen, France: Atmo Normandie. http://www.atmonormandie.fr/dyn/cgi/download_file.php?action=DOWNLOAD_FILE_PUBLICATION&object_id=5791&name=Incendie%20au%20sein%20de%20l%E2%80%99entreprise%20LINEX%20%C3%A0%20Allouville-Bellefosse%20en%20novembre%202020&file=var/fre/storage/original/application/4f986560dac978ad17a2ccd047edfa3e.pdf.
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 1997. Healthy children—toxic environments. Acting on the unique susceptibility of children who dwell near hazardous waste sites. Report of the Child Health Workgroup. [Internet]. Atlanta, GA: ATSDR. https://books.google.fr/books?hl=fr&lr=&id=YOejla1f3NAC&oi=fnd&pg=PR4&dq=Acting+on+the+unique+susceptibility+of+children+who+dwell+near+hazardous+waste+sites&ots=sRA6gh8qf2&sig=dGQG7WeiNOvAOY2E5r9GgF7CrfQ&redir_esc=y#v=onepage&q=Acting%20on%20the%20unique%20susceptibility%20of%20children%20who%20dwell%20near%20hazardous%20waste%20sites&f=false
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 2007. Toxicological profile for arsenic. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf.
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 2012. Toxicological profile for cadmium. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 2020. Toxicological profile for lead. https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 2022a. Minimal risk levels (MRLs). https://www.atsdr.cdc.gov/mrls/pdfs/ATSDR%20MRLs%20-%20February%202022%20-%20H.pdf
  • [ATSDR] Agency for Toxic Substances and Disease Registry. 2022b. Toxicological profile for mercury. https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf
  • Bajard L, Adamovsky O, Audouze K, Baken K, Barouki R, Beltman JB, Beronius A, Bonefeld-Jørgensen EC, Cano-Sancho G, de Baat ML, et al. 2023. Application of AOPs to assist regulatory assessment of chemical risks – Case studies, needs and recommendations. Environ Res. 217:114650. doi: 10.1016/j.envres.2022.114650.
  • Barouki R, Audouze K, Becker C, Blaha L, Coumoul X, Karakitsios S, Klanova J, Miller GW, Price EJ, Sarigiannis D. 2022. The exposome and toxicology: a Win–Win collaboration. Toxicol Sci. 186(1):1–11. doi: 10.1093/toxsci/kfab149.
  • Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, et al. 2018. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int. 114:77–86. doi: 10.1016/j.envint.2018.02.014.
  • Barr DB, Wang RY, Needham LL. 2005. Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the national children’s study. Environ Health Perspect. 113(8):1083–1091 doi: 10.1289/ehp.7617.
  • Beronius A, Zilliacus J, Hanberg A, Luijten M, Van Der Voet H, Van Klaveren J. 2020. Methodology for health risk assessment of combined exposures to multiple chemicals. Food Chem Toxicol. 143:111520. doi: 10.1016/j.fct.2020.111520.
  • Bhattacharyya MH. 1991. Cadmium-induced bone loss: increased susceptibility in females. Water Air Soil Pollut. 57–58(1):665–673. doi: 10.1007/BF00282930.
  • Bil W, Zeilmaker M, Fragki S, Lijzen J, Verbruggen E, Bokkers B. 2021. Risk Assessment of Per‐ and Polyfluoroalkyl Substance Mixtures: a Relative Potency Factor Approach. Environ Toxicol Chem. 40(3):859–870. doi: 10.1002/etc.4835.
  • Bocquet A, Corbeau JP, Bocquet M. 2014. Etude Nutri-bébé SFAE 2013/comportements alimentaires avant l’âge de 3 ans [Nutri-Bebe SFAE 2013 study/dietary pattern before 3 year-old]. Archives de Pédiatrie. 21(5):334. doi: 10.1016/S0929-693X(14)71594-5.
  • Bois FY, Ochoa JGD, Gajewska M, Kovarich S, Mauch K, Paini A, Péry A, Benito JVS, Teng S, Worth A. 2017. Multiscale modelling approaches for assessing cosmetic ingredients safety. Toxicology. 392:130–139. doi: 10.1016/j.tox.2016.05.026.
  • Boyce WT, Sokolowski MB, Robinson GE. 2020. Genes and environments, development and time. Proc Natl Acad Sci U S A. 117(38):23235–23241. doi: 10.1073/pnas.2016710117.
  • Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P. 2022. An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol. 96(6):1661–1671. doi: 10.1007/s00204-022-03264-8.
  • Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. 2017. Biomarkers of mercury toxicity: past, present, and future trends. J Toxicol Environ Health B Crit Rev. 20(3):119–154. doi: 10.1080/10937404.2017.1289834.
  • de Burbure C, Buchet J-P, Leroyer A, Nisse C, Haguenoer J-M, Mutti A, Smerhovský Z, Cikrt M, Trzcinka-Ochocka M, Razniewska G, et al. 2006. Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: evidence of early effects and multiple interactions at environmental exposure levels. Environ Health Perspect. 114(4):584–590. doi: 10.1289/ehp.8202.
  • Cadiou S, Bustamante M, Agier L, Andrusaityte S, Basagaña X, Carracedo A, Chatzi L, Grazuleviciene R, Gonzalez JR, Gutzkow KB, et al. 2020. Using methylome data to inform exposome-health association studies: an application to the identification of environmental drivers of child body mass index. Environ Int. 138:105622. doi: 10.1016/j.envint.2020.105622.
  • Calkins J, Delmelle P. 2021. Quantitative analysis of persistent volcanic fluoride risk reveals differential exposure pathways for adults and children downwind of Masaya Volcano, Nicaragua. Bull Volcanol. 83(12):83. doi: 10.1007/s00445-021-01504-w.
  • Cedergreen N. 2014. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. Nazir A, editor. PLoS One. 9(5):e96580. doi: 10.1371/journal.pone.0096580.
  • Coelho P, Costa S, Costa C, Silva S, Walter A, Ranville J, Pastorinho MR, Harrington C, Taylor A, Dall’Armi V, et al. 2014. Biomonitoring of several toxic metal(loid)s in different biological matrices from environmentally and occupationally exposed populations from Panasqueira mine area, Portugal. Environ Geochem Health. 36(2):255–269. doi: 10.1007/s10653-013-9562-7.
  • Cohen Hubal EA, de Wet T, Du Toit L, Firestone MP, Ruchirawat M, van Engelen J, Vickers C. 2014. Identifying important life stages for monitoring and assessing risks from exposures to environmental contaminants: results of a World Health Organization review. Regul Toxicol Pharmacol. 69(1):113–124. doi: 10.1016/j.yrtph.2013.09.008.
  • Crépet A, Vasseur P, Jean J, Badot P-M, Nesslany F, Vernoux J-P, Feidt C, Mhaouty-Kodja S. 2022. Integrating selection and risk assessment of chemical mixtures: a novel approach applied to a breast milk survey. Environ Health Perspect. 130(3):35001. doi: 10.1289/EHP8262.
  • Dede E, Tindall MJ, Cherrie JW, Hankin S, Collins C. 2018. Physiologically-based pharmacokinetic and toxicokinetic models for estimating human exposure to five toxic elements through oral ingestion. Environ Toxicol Pharmacol. 57:104–114. doi: 10.1016/j.etap.2017.12.003.
  • Dekker LH, Rijnks RH, Strijker D, Navis GJ. 2017. A spatial analysis of dietary patterns in a large representative population in the north of The Netherlands – the Lifelines cohort study. Int J Behav Nutr Phys Act. 14(1):166. doi: 10.1186/s12966-017-0622-8.
  • Desalegn A, Bopp S, Asturiol D, Lamon L, Worth A, Paini A. 2019. Role of Physiologically Based Kinetic modelling in addressing environmental chemical mixtures – A review. Comput Toxicol. 10:158–168. doi: 10.1016/j.comtox.2018.09.001.
  • [EFSA] European Food Safety Agency. 2009. Cadmium in food ‐ scientific opinion of the panel on contaminants in the food chain. EFSA J. 7(3):980.
  • [EFSA] European Food Safety Agency. 2010. Scientific opinion on lead in food. EFSA J. 8(4):1570.
  • [EFSA] European Food Safety Agency. 2013. Scientific Opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J. 11(7):3293.
  • More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, et al. 2019. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17(3):e05634 doi: 10.2903/j.efsa.2019.5634.
  • [EFSA, FAO and WHO] European Food Safety Agency, Food and Agriculture Organisation and World Health Organisation. 2011. Towards a harmonised Total Diet Study approach: a guidance document. EFSA J. 9(11):2450.
  • More SJ, Bampidis V, Benford D, Bragard C, Hernandez‐Jerez A, Bennekou SH, Halldorsson TI, Koutsoumanis KP, Lambré C, Machera K, et al. 2021. Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J. 19(12):e07033. doi: 10.2903/j.efsa.2021.7033.
  • [EFSA] European Food Safety Agency. 2012. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10(12):1–241.
  • Etchevers A, Bretin P, Le Tertre A, Lecoffre C. 2013. Imprégnation des enfants français par le plomb en 2008-2009. Enquête Saturn-Inf 2008-2009. Enquête nationale de prévalence du saturnisme chez les enfants de 6 mois à 6 ans. [Body burden to lead in French children in 2008-2009. National survey of prevalence to lead poisoning for children from 6 months to 6 years-old.] [Internet]. Saint-Maurice: Institut de veille sanitaire. http://www.invs.sante.fr.
  • Fillol C, Balicco A, Oleko A, Gane J, Saoudi A, Zeghnoun A. 2021. Imprégnation de la population française par l’arsenic. Programme national de biosurveillance, Esteban 2014-2016. [Body burden to arsenic in French population. National programme of biomonitoring, Esteban, 2014-2016] [Internet]. Saint-Maurice: santé publique France. https://www.santepubliquefrance.fr.
  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, et al. 2005. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 102(30):10604–10609. doi: 10.1073/pnas.0500398102.
  • Gao Y, Zhang Y, Feng J, Zhu L. 2019. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish. Environ Pollut. 251:221–229. doi: 10.1016/j.envpol.2019.05.003.
  • Gazan R, Béchaux C, Crépet A, Sirot V, Drouillet-Pinard P, Dubuisson C, Havard S. 2016. Dietary patterns in the French adult population: a study from the second French national cross-sectional dietary survey (INCA2) (2006–2007). Br J Nutr. 116(2):300–315. doi: 10.1017/S0007114516001549.
  • Geraets L, Nijkamp MM, ter Burg W. 2016. Critical elements for human health risk assessment of less than lifetime exposures. Regul Toxicol Pharmacol. 81:362–371. doi: 10.1016/j.yrtph.2016.09.026.
  • Glorennec P, Lucas J-P, Etchevers A, Oulhote Y, Mandin C, Poupon J, Le Strat Y, Bretin P, Douay F, Le Bot B, et al. 2015. Children’s lead exposure at home. The Plomb-Habitat Project (2008-2014): principal results, impact, and perspectives. Environnement. Risques et Sante. 14(1):28–37.
  • Goumenou M, Tsatsakis A. 2019. Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: the source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicol Rep. 6:632–636. doi: 10.1016/j.toxrep.2019.06.010.
  • Haddad S, Krishnan K. 1998. Physiological modeling of toxicokinetic interactions: implications for mixture risk assessment. Environ Health Perspect. 106(suppl 6):1377–1384. doi: 10.1289/ehp.98106s61377.
  • HBM4EU 2018. Biomarkers of effect: what you need to know [Internet]. https://www.hbm4eu.eu/wp-content/uploads/2018/12/Biomarkers-of-effects-factsheet_EN_final-1.pdf.
  • Hoer D, Barton HA, Paini A, Bartels M, Ingle B, Domoradzki J, Fisher J, Embry M, Villanueva P, Miller D, et al. 2022. Predicting nonlinear relationships between external and internal concentrations with physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol. 440:115922. doi: 10.1016/j.taap.2022.115922.
  • Holstius DM, Reid CE, Jesdale BM, Morello-Frosch R. 2012. Birth Weight following Pregnancy during the 2003 Southern California Wildfires. Environ Health Perspect. 120(9):1340–1345. doi: 10.1289/ehp.1104515.
  • Hulin M, Bemrah N, Nougadère A, Volatier JL, Sirot V, Leblanc JC. 2014. Assessment of infant exposure to food chemicals: the French Total Diet Study design. Food Addit Contam Part A. 31(7):1226–1239. doi: 10.1080/19440049.2014.921937.
  • [IARC] International Agency for Research on Cancer. 1993. Beryllium, cadmium, mercury, and exposures in the glass manu/acturing industry. Lyon: International Agency for Research on Cancer.
  • [IARC] International Agency for Research on Cancer. 2006. Inorganic and organic lead compounds. Lyon, FR: International Agency for Research on Cancer.
  • [IARC] International Agency for Research on Cancer. 2012. A review of human carcinogens. Lyon: International Agency for Research on Cancer.
  • Iyengar G, Rapp A. 2001. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3: toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ. 280(1-3):221–238. (01)00827-0 doi: 10.1016/s0048-9697(01)00827-0.
  • Jamnik T, Flasch M, Braun D, Fareed Y, Wasinger D, Seki D, Berry D, Berger A, Wisgrill L, Warth B. 2022. Next-generation biomonitoring of the early-life chemical exposome in neonatal and infant development. Nat Commun. 13(1):2653. doi: 10.1038/s41467-022-30204-y.
  • de Juras AR, Hsu W-C, Hu SC. 2022. Dietary Patterns and Their Association with Sociodemographic and Lifestyle Factors in Filipino Adults. Nutrients. 14(4):886. doi: 10.3390/nu14040886.
  • Kapraun DF, Wambaugh JF, Setzer RW, Judson RS. 2019. Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation.Spradley FT, editor. PLoS One. 14(5):e0215906. doi: 10.1371/journal.pone.0215906.
  • Kolbaum AE, Berg K, Müller F, Kappenstein O, Lindtner O. 2019. Dietary exposure to elements from the German pilot total diet study (TDS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36(12):1822–1836. doi: 10.1080/19440049.2019.1668967.
  • Kostoff RN, Aschner M, Goumenou M, Tsatsakis A. 2020. Setting safer exposure limits for toxic substance combinations. Food Chem Toxicol. 140:111346. doi: 10.1016/j.fct.2020.111346.
  • Krief S, Iglesias-González A, Appenzeller BMR, Rachid L, Beltrame M, Asalu E, Okimat J-P, Kane-Maguire N, Spirhanzlova P. 2022. Chimpanzee exposure to pollution revealed by human biomonitoring approaches. Ecotoxicol Environ Saf. 233:113341. doi: 10.1016/j.ecoenv.2022.113341.
  • Kumari M, Kumar A. 2020a. Human health risk assessment of antibiotics in binary mixtures for finished drinking water. Chemosphere. 240:124864. doi: 10.1016/j.chemosphere.2019.124864.
  • Kumari M, Kumar A. 2020b. Identification of component-based approach for prediction of joint chemical mixture toxicity risk assessment with respect to human health: a critical review. Food Chem Toxicol. 143:111458. doi: 10.1016/j.fct.2020.111458.
  • Ledoux C, Sirot V, Rivière G. 2017. Comparaison des contaminations et des expositions alimentaires des années 1970, 2000 et 2010 [Contaminations and dietary exposures comparisons between 1970’s, 2000’s and 2010’s]. Environnement, Risques & Santé. 16(2):151–160.
  • Lehmann GM, Verner M-A, Luukinen B, Henning C, Assimon SA, LaKind JS, McLanahan ED, Phillips LJ, Davis MH, Powers CM, et al. 2014. Improving the risk assessment of lipophilic persistent environmental chemicals in breast milk. Crit Rev Toxicol. 44(7):600–617. doi: 10.3109/10408444.2014.926306.
  • Lin Y-J, Hsiao J-L, Hsu H-T. 2020. Integration of biomonitoring data and reverse dosimetry modeling to assess population risks of arsenic-induced chronic kidney disease and urinary cancer. Ecotoxicol Environ Saf. 206:111212. doi: 10.1016/j.ecoenv.2020.111212.
  • Lioy PJ, Smith KR. 2013. A discussion of exposure science in the 21st century: a vision and a strategy. Environ Health Perspect. 121(4):405–409. doi: 10.1289/ehp.1206170.
  • Lucas J-P, Le Bot B, Glorennec P, Etchevers A, Bretin P, Douay F, Sébille V, Bellanger L, Mandin C. 2012. Lead contamination in French children’s homes and environment. Environ Res. 116:58–65. doi: 10.1016/j.envres.2012.04.005.
  • Ma J, Li Y, Liu Y, Wang X, Lin C, Cheng H. 2020. Metal(loid) bioaccessibility and children’s health risk assessment of soil and indoor dust from rural and urban school and residential areas. Environ Geochem Health. 42(5):1291–1303. doi: 10.1007/s10653-019-00415-2.
  • Mao W, Jiang D, Sui H, Song Y, Shao Y, Zhang L. 2022. Application of the maximum cumulative ratio (MCR) as a screening tool for the evaluation of multiple metal mixtures in shellfish in Chinese population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 39(5):938–948. doi: 10.1080/19440049.2022.2037726.
  • Marchand A, Aranda-Rodriguez R, Tardif R, Nong A, Haddad S. 2016. Evaluation and modeling of the impact of coexposures to VOC mixtures on urinary biomarkers. Inhal Toxicol. 28(6):260–273. doi: 10.3109/08958378.2016.1162232.
  • Maseko T, Howell K, Dunshea FR, Ng K. 2014. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem. 146:327–333. doi: 10.1016/j.foodchem.2013.09.074.
  • Meek ME, (Bette), Boobis AR, Crofton KM, Heinemeyer G, Van Raaij M, Vickers C. 2011. Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharm. 60(2):S1–S14.
  • Migliorati JM, Liu S, Liu A, Gogate A, Nair S, Bahal R, Rasmussen TP, Manautou JE, Zhong X. 2022. Absorption, distribution, metabolism, and excretion of FDA-approved antisense oligonucleotide drugs. Drug Metab Dispos. 50(6):888–897. doi: 10.1124/dmd.121.000417.
  • Moya J, Phillips L. 2014. A review of soil and dust ingestion studies for children. J Expo Sci Environ Epidemiol. 24(6):545–554. doi: 10.1038/jes.2014.17.
  • Mumtaz MM, Fowler BA, Ruiz P. 2021. Computational modeling and dosimetry of metals. In: Nordberg GF, Costa M, editors. Handbook on the Toxicology of Metals: volume I: general Considerations. London: Academic Press; p. 237–252. doi: 10.1016/B978-0-12-823292-7.00023-1.
  • Muri SD, Schlatter JR, Brüschweiler BJ. 2009. The benchmark dose approach in food risk assessment: is it applicable and worthwhile? Food Chem Toxicol. 47(12):2906–2925. doi: 10.1016/j.fct.2009.08.002.
  • Nilsson EE, Ben Maamar M, Skinner MK. 2022. Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet. 8(1):dvac001. doi: 10.1093/eep/dvac001.
  • Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. 2021. Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere. 262:128350. doi: 10.1016/j.chemosphere.2020.128350.
  • Price K, Haddad S, Krishnan K. 2003. Physiological Modeling of Age-Specific Changes in the Pharmacokinetics of Organic Chemicals in Children. J Toxicol Environ Health A. 66(5):417–433. doi: 10.1080/15287390306450.
  • Price P, Dhein E, Hamer M, Han X, Heneweer M, Junghans M, Kunz P, Magyar C, Penning H, Rodriguez C. 2012. A decision tree for assessing effects from exposures to multiple substances. Environ Sci Eur. 24(1):26. doi: 10.1186/2190-4715-24-26.
  • Price P, Han X. 2011. Maximum Cumulative Ratio (MCR) as a Tool for Assessing the Value of Performing a Cumulative Risk Assessment. Int J Environ Res Public Health. 8(6):2212–2225. doi: 10.3390/ijerph8062212.
  • Pruvost-Couvreur M, Béchaux C, Rivière G, Le Bizec B. 2021. Impact of sociodemographic profile, generation and bioaccumulation on lifetime dietary and internal exposures to PCBs. Sci Total Environ. 800:149511. doi: 10.1016/j.scitotenv.2021.149511.
  • Pruvost-Couvreur M, Le Bizec B, Béchaux C, Rivière G. 2020. A method to assess lifetime dietary risk: example of cadmium exposure. Food Chem Toxicol. 137:111130. doi: 10.1016/j.fct.2020.111130.
  • Pruvost-Couvreur M, Le Bizec B, Margaritis I, Volatier J-L, Béchaux C, Rivière G. 2020. Impact of dietary guidelines on lifetime exposure to chemical contaminants: divergent conclusions for two bioaccumulative substances. Food Chem Toxicol. 145:111672. doi: 10.1016/j.fct.2020.111672.
  • Puntmann VO. 2009. How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgrad Med J. 85(1008):538–545. doi: 10.1136/pgmj.2008.073759.
  • Quignot N, Béchaux C, Amzal B. 2015. Data collection on toxicokinetic and toxicodynamic interactions of chemical mixtures for human risk assessment. EFS3. 12(3):711E. doi: 10.2903/sp.efsa.2015.EN-711.
  • Tebby C, Gao W, Delp J, Carta G, van der Stel W, Leist M, Jennings P, van de Water B, Bois FY. 2022. A quantitative AOP of mitochondrial toxicity based on data from three cell lines. Toxicol in Vitro. 81:105345. doi: 10.1016/j.tiv.2022.105345.
  • Teuschler L. 2007. Deciding which chemical mixtures risk assessment methods work best for what mixtures. ⋆.Toxicol Appl Pharmacol. 223(2):139–147. doi: 10.1016/j.taap.2006.07.010.
  • Tohon H, Valcke M, Haddad S. 2019. An assessment of the impact of multi‐route co‐exposures on human variability in toxicokinetics: a case study with binary and quaternary mixtures of volatile drinking water contaminants. J Appl Toxicol. 39(7):974–991. doi: 10.1002/jat.3787.
  • Rădulescu A, Lundgren S. 2019. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci Rep. 9(1):14225. doi: 10.1038/s41598-019-50654-7.
  • Ribeiro M, Zephyr N, Silva JAL, Danion M, Guérin T, Castanheira I, Leufroy A, Jitaru P. 2022. Assessment of the mercury-selenium antagonism in rainbow trout fish. Chemosphere. 286(Pt 2):131749. doi: 10.1016/j.chemosphere.2021.131749.
  • Rigourd V. 2015. Levels of contaminants in human milk (Conta-Lait) [Internet]. [place unknown]; [accessed 2015 Oct 8]. https://clinicaltrialsgov/ct2/show/NCT01848444.
  • Riviere J-L. 1993. Les animaux sentinelles. [Internet]. Marcy l’Etoile: ecole Nationale Vétérinaire de Lyon. https://hal.archives-ouvertes.fr/hal-01207265/file/C20Riviere.pdf.
  • Ryan PB, Burke TA, Cohen Hubal EA, Cura JJ, McKone TE. 2007. Using Biomarkers to Inform Cumulative Risk Assessment. Environ Health Perspect. 115(5):833–840. doi: 10.1289/ehp.9334.
  • Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, et al. 2022. The Eco-Exposome Concept: supporting an Integrated Assessment of Mixtures of Environmental Chemicals. Environ Toxicol Chem. 41(1):30–45. doi: 10.1002/etc.5242.
  • Sillé F. 2020. The exposome – a new approach for risk assessment. ALTEX. 37(1):3–23. doi: 10.14573/altex.2001051.
  • Slob W. 2006. The use of advanced risk assessment methods in answering various types of risk management questions. Bilthoven: RIVM. https://www.rivm.nl/bibliotheek/rapporten/320016001.pdf.
  • von Stackelberg K, Guzy E, Chu T, Henn BC. 2015. Exposure to mixtures of metals and neurodevelopmental outcomes: a multidisciplinary review using an adverse outcome pathway framework. Risk Anal. 35(6):971–1016. doi: 10.1111/risa.12425.
  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ. 2000. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 74(6):289–299. doi: 10.1007/s002040000134.
  • Tebby C, van der Voet H, de Sousa G, Rorije E, Kumar V, de Boer W, Kruisselbrink JW, Bois FY, Faniband M, Moretto A, et al. 2020. A generic PBTK model implemented in the MCRA platform: predictive performance and uses in risk assessment of chemicals. Food Chem Toxicol. 142:111440. doi: 10.1016/j.fct.2020.111440.
  • Teeguarden JG, Tan Y-M, Edwards SW, Leonard JA, Anderson KA, Corley RA, Kile ML, Simonich SM, Stone D, Tanguay RL, et al. 2016. Completing the link between exposure science and toxicology for improved environmental health decision making: the aggregate exposure pathway framework. Environ Sci Technol. 50(9):4579–4586. doi: 10.1021/acs.est.5b05311.
  • Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK. 2013. Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod Toxicol. 36:104–116. doi: 10.1016/j.reprotox.2012.11.011.
  • Traoré T, Béchaux C, Sirot V, Crépet A. 2016. To which chemical mixtures is the French population exposed? Mixture identification from the second French Total Diet Study. Food Chem Toxicol. 98(Pt B):179–188. doi: 10.1016/j.fct.2016.10.028.
  • [US EPA] US Environmental Protection Agency. 2000. Supplementary guidance for conducting health risk assessment of chemical Mixtures. Washington, DC: US EPA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=20533
  • [US EPA] US Environmental Protection Agency. 2006. A framework for assessing health risks of environmental exposures to children. Washington, DC: US EPA. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=158363
  • [US EPA] US Environmental Protection Agency. 2011. Exposure factors handbook 2011 edition (Final Report). Washington, DC: U.S. Environmental Protection Agency. https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
  • Vacchina V, Séby F, Chekri R, Verdeil J, Dumont J, Hulin M, Sirot V, Volatier J-L, Serreau R, Rousseau A, et al. 2017. Optimization and validation of the methods for the total mercury and methylmercury determination in breast milk. Talanta. 167:404–410. doi: 10.1016/j.talanta.2017.02.046.
  • Valcke M, Haddad S. 2015. Assessing Human Variability in Kinetics for Exposures to Multiple Environmental Chemicals: A Physiologically Based Pharmacokinetic Modeling Case Study with Dichloromethane, Benzene, Toluene, Ethylbenzene, and m -Xylene. J Toxicol Environ Health A. 78(7):409–431. doi: 10.1080/15287394.2014.971477.
  • Vanacker M, Quindroit P, Angeli K, Mandin C, Glorennec P, Brochot C, Crépet A. 2020. Aggregate and cumulative chronic risk assessment for pyrethroids in the French adult population. Food Chem Toxicol. 143:111519. doi: 10.1016/j.fct.2020.111519.
  • Verner M-A, McDougall R, Johanson G. 2012. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: the example of occupational exposure to styrene. Toxicol Lett. 213(2):299–304. doi: 10.1016/j.toxlet.2012.05.024.
  • Viet SM, Dellarco M, Chen E, McDade T, Faustman E, Brachvogel S, Smith M, Wright R. 2021. Recommendations for Assessment of Environmental Exposures in Longitudinal Life Course Studies Such as the National Children’s Study. Front Pediatr. 9:629487. doi: 10.3389/fped.2021.629487.
  • Vineis P, Chadeau-Hyam M, Gmuender H, Gulliver J, Herceg Z, Kleinjans J, Kogevinas M, Kyrtopoulos S, Nieuwenhuijsen M, Phillips DH, et al. 2017. The exposome in practice: design of the EXPOsOMICS project. Int J Hyg Environ Health. 220(2 Pt A):142–151. doi: 10.1016/j.ijheh.2016.08.001.
  • [WHO] World Health Organisation. 2023. 10 chemicals of public health concern. World Health Organization [Internet]. https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern.
  • [WHO/IPCS] World Health Organisation/International Panel of Chemical Safety. 2010. Characterization and application of physiologically based phamacokinetic models in risk assessment [Internet]. https://apps.who.int/iris/handle/10665/44495.
  • [WHO/IPCS] World Health Organisation/International Panel of Chemical Safety. 2021. WHO human health risk assessment toolkit: chemical hazards [Internet]. https://apps.who.int/iris/handle/10665/350206.
  • Wild CP. 2005. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 14(8):1847–1850. doi: 10.1158/1055-9965.EPI-05-0456.
  • Wild CP. 2012. The exposome: from concept to utility. Int J Epidemiol. 41(1):24–32. doi: 10.1093/ije/dyr236.
  • Zgheib E, Gao W, Limonciel A, Aladjov H, Yang H, Tebby C, Gayraud G, Jennings P, Sachana M, Beltman JB, et al. 2019. Application of three approaches for quantitative AOP development to renal toxicity. Comput Toxicol. 11:1–13. doi: 10.1016/j.comtox.2019.02.001.
  • Zhang Y, Liu Z, Wang Z, Gao H, Wang Y, Cui M, Peng H, Xiao Y, Jin Y, Yu D, et al. 2023. Health risk assessment of cadmium exposure by integration of an in silico physiologically based toxicokinetic model and in vitro tests. J Hazard Mater. 443(Pt A):130191. doi: 10.1016/j.jhazmat.2022.130191.
  • Zhu W, Yang X, He J, Wang X, Lu R, Zhang Z. 2021. Investigation and systematic risk assessment in a typical contaminated site of hazardous waste treatment and disposal. Front Public Health. 9:764788. doi: 10.3389/fpubh.2021.764788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.