109
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of reduced graphene oxide-based nanomaterial as dispersive solid phase extraction sorbent for isolation and purification of aflatoxins from poultry feed, combined with UHPLC–MS/MS analysis

, , , , , ORCID Icon & show all
Pages 1035-1048 | Received 24 Apr 2023, Accepted 22 Jun 2023, Published online: 17 Jul 2023

References

  • Abdallah MF, Girgin G, Baydar T, Krska R, Sulyok M. 2017. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC–MS/MS. J Sci Food Agric. 97(13):4419–4428. doi: 10.1002/jsfa.8293.
  • Alaboudi ARO, Tareq M, Otoum G. 2022. Quantification of mycotoxin residues in domestic and imported chicken muscle, liver and kidney in Jordan. Food Control. 132:108511. doi: 10.1016/j.foodcont.2021.108511.
  • Armanini EHB, Cecere MM, Oliveira BGO, Teixeira PV, Strapazzon CJS, Bottari JV, Silva NB, Fracasso AD, Vendruscolo M, Wagner RG, et al. 2021. Protective effects of silymarin in broiler feed contaminated by mycotoxins: growth performance, meat antioxidant status, and fatty acid profiles. Trop Anim Health Prod. 53(4):442. doi: 10.1007/s11250-021-02873-2.
  • Benkerroum N. 2020. Aflatoxins: producing—molds, structure, health issues and incidence in Southeast Asian and Sub-Saharan African countries. Int J Environ Res Public Health. 17(4):1215. doi: 10.3390/ijerph17041215.
  • Bryden WL. 2012. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Anim Feed Sci Technol. 173(1–2):134–158. doi: 10.1016/j.anifeedsci.2011.12.014.
  • Chen D, Zou L, Li S, Zheng F. 2016. Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci Rep. 6:20335. doi: 10.1038/srep20335.
  • Devegowda G, Murthy TNK. 2005. Mycotoxins: their effects in poultry and some practical solutions. In: Diaz DE, editor. The mycotoxin blue book. India: Nottingham University Press; p. 25–56.
  • Di Stefano VP, Pitonzo R, Cicero N, D'Oca MC. 2014. Mycotoxin contamination of animal feedingstuff: detoxification by gamma-irradiation and reduction of aflatoxins and ochratoxin A concentrations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 31(12):2034–2039. doi: 10.1080/19440049.2014.968882.
  • Dreyer DR, Park S, Bielawski CW, Ruoff RS. 2010. The chemistry of graphene oxide. Chem Soc Rev. 39(1):228–240. doi: 10.1039/b917103g.
  • European Commission. 2002. Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performances of analytical methods and the interpretation of results. Off J Eur Commun. 36:8–36.
  • European Commission. 2006. Commission Regulation (EC) No. 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off J Eur Union. 70:12–34.
  • Faraji M, Yamini Y, Gholami M. 2019. Recent advances and trends in applications of solid-phase extraction techniques in food and environmental analysis. Chromatographia. 82(8):1207–1249. doi: 10.1007/s10337-019-03726-9.
  • Ghorbani M, Aghamohammadhassan M, Ghorbani H, Zabihi A. 2020. Trends in sorbent development for dispersive micro-solid phase extraction. Microchem J. 158:105250. doi: 10.1016/j.microc.2020.105250.
  • Hummers WSO Jr, Richard E. 1958. Preparation of graphitic oxide. J Am Chem Soc. 80(6):1339–1339. doi: 10.1021/ja01539a017.
  • Ibrahim MIM. 2020. Immunochromatographic techniques for mycotoxin analysis. In: Mahendra Rai, editor. Nanomycotoxicology. India: Academic Press; p. 71–86.
  • ICH Harmonized Guideline. 2022. Bioanalytical method validation and study sample analysis M10. Guideline 2022. Geneva, Switzerland: ICH Harmonised Guideline.
  • ICH. 2005. Validation of analytical procedures: text and methodology. Q2. 1:5.
  • Juan C, Oueslati S, Mañes J, Berrada H. 2019. Multimycotoxin determination in Tunisian farm animal feed. J Food Sci. 84(12):3885–3893. doi: 10.1111/1750-3841.14948.
  • Kemboi DC, Ochieng PE, Antonissen G, Croubels S, Scippo M-L, Okoth S, Kangethe EK, Faas J, Doupovec B, Lindahl JF, et al. 2020. Multi-mycotoxin occurrence in dairy cattle and poultry feeds and feed ingredients from Machakos Town, Kenya. Toxins. 12(12):762. doi: 10.3390/toxins12120762.
  • Kim D-H, Hong S-Y, Kang J, Cho S, Lee K, An T, Lee C, Chung S. 2017. Simultaneous determination of multi-mycotoxins in cereal grains collected from South Korea by LC/MS/MS. Toxins. 9(3):106. doi: 10.3390/toxins9030106.
  • Kozloski RP. 1986. High performance thin layer chromatographic screening for aflatoxins in poultry feed by using silica sep-paks. Bull Environ Contam Toxicol. 36(6):815–818. doi: 10.1007/BF01623588.
  • Kumar A, Dhanshetty M, Banerjee K. 2020. Development and validation of a method for direct analysis of aflatoxins in animal feeds by ultra-high-performance liquid chromatography with fluorescence detection. J AOAC Int. 103(4):940–945. doi: 10.1093/jaoacint/qsz037.
  • Maciel E, Neto AL, Nazario ES, Lancas AED, Mauro F. 2019. New materials in sample preparation: recent advances and future trends. TrAC. 119:115633. doi: 10.1016/j.trac.2019.115633.
  • Mackay N, Marley E, Leeman D, Poplawski C, Donnelly C. 2022. Analysis of Aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone, HT-2, and T-2 toxins in animal feed by LC–MS/MS using cleanup with a multi-antibody immunoaffinity column. J AOAC Int. 105(5):1330–1340. doi: 10.1093/jaoacint/qsac035.
  • Mokubedi SM, Phoku JZ, Changwa RN, Gbashi S, Njobeh PB. 2019. Analysis of mycotoxins contamination in poultry feeds manufactured in selected provinces of South Africa using UHPLC–MS/MS. Toxins. 11(8):452. doi: 10.3390/toxins11080452.
  • Monge MP, Dalcero AM, Magnoli CE, Chiacchiera SM. 2013. Natural co-occurrence of fungi and mycotoxins in poultry feeds from Entre Rios, Argentina. Food Addit Contam Part B Surveill. 6(3):168–174. doi: 10.1080/19393210.2013.777946.
  • Nainani RK, Thakur P. 2016. Facile synthesis of TiO2-RGO composite with enhanced performance for the photocatalytic mineralization of organic pollutants. Water Sci Technol. 73(8):1927–1936. doi: 10.2166/wst.2016.039.
  • Nakhjavan B, Ahmed NS, Khosravifard M. 2020. Development of an improved method of sample extraction and quantitation of multi-mycotoxin in feed by LC–MS/MS. Toxins. 12(7):462. doi: 10.3390/toxins12070462.
  • Nasaruddin N, Jinap S, Samsudin NIP, Kamarulzaman NH, Sanny M. 2022. Assessment of multi-mycotoxin contamination throughout the supply chain of maize-based poultry feed from selected regions of Malaysia by LC–MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 39(4):777–787. doi: 10.1080/19440049.2022.2036821.
  • Nleya N, Adetunji MC, Mwanza M. 2018. Current status of mycotoxin contamination of food commodities in Zimbabwe. Toxins. 10(5):89. doi: 10.3390/toxins10050089.
  • Pantano L, La Scala L, Olibrio F, Galluzzo FG, Bongiorno C, Buscemi MD, Macaluso A, Vella A. 2021. QuEChERS LC–MS/MS screening method for mycotoxin detection in cereal products and spices. Int J Environ Res Public Health. 18(7):3774. doi: 10.3390/ijerph18073774.
  • Park J, Kim D-H, Moon J-Y, An J-A, Kim Y-W, Chung S-H, Lee C. 2018. Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC–MS/MS to evaluate the carry-over ratio during wet-milling. Toxins. 10(8):319. doi: 10.3390/toxins10080319.
  • Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J. 2016. Modern trends in solid phase extraction: new sorbent media. TrAC. 77:23–43. doi: 10.1016/j.trac.2015.10.010.
  • Qian Y, Song K, Hu T, Ying T. 2018. Environmental status of livestock and poultry sectors in China under current transformation stage. Sci Total Environ. 622–623:702–709. doi: 10.1016/j.scitotenv.2017.12.045.
  • Salisu B, Anua SM, Ishak WRW, Mazlan N. 2021. Development and validation of quantitative thin layer chromatographic technique for determination of total aflatoxins in poultry feed and food grains without sample clean-up. J Adv Vet Anim Res. 8(4):656–670. doi: 10.5455/javar.2021.h558.
  • Sarwat A, Rauf W, Majeed S, De Boevre M, De Saeger S, Iqbal M. 2022. LC–MS/MS based appraisal of multi-mycotoxin co-occurrence in poultry feeds from different regions of Punjab, Pakistan. Food Addit Contam Part B Surveill. 15(2):106–122. doi: 10.1080/19393210.2022.2037722.
  • Seo H, Jang S, Jo H, Kim H, Lee S, Yun H, Jeong M, Moon J, Na T, Cho H. 2021. Optimization of the QuEChERS-based analytical method for investigation of 11 mycotoxin residues in feed ingredients and compound feeds. Toxins. 13(11):767. doi: 10.3390/toxins13110767.
  • Shang H, Ma M, Liu F, Miao Z, Zhang A. 2019. Self-assembled reduced graphene oxide-TiO2 thin film for the enhanced photocatalytic reduction of Cr(VI) under simulated solar irradiation. J Nanosci Nanotechnol. 19(6):3376–3387. doi: 10.1166/jnn.2019.16140.
  • Sitko R, Zawisza B, Malicka E. 2013. Graphene as a new sorbent in analytical chemistry. TrAC. 51:33–43. doi: 10.1016/j.trac.2013.05.011.
  • Smith M-C, Madec S, Coton E, Hymery N. 2016. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins. 8(4):94. doi: 10.3390/toxins8040094.
  • Steiner D, Krska R, Malachová A, Taschl I, Sulyok M. 2020. Evaluation of matrix effects and extraction efficiencies of LC–MS/MS methods as the essential part for proper validation of multiclass contaminants in complex feed. J Agric Food Chem. 68(12):3868–3880. doi: 10.1021/acs.jafc.9b07706.
  • Tan L-L, Ong W-J, Chai S-P, Mohamed AR. 2013. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res Lett. 8(1):465. doi: 10.1186/1556-276X-8-465.
  • Tanveer ZI, Huang Q, Liu L, Jiang K, Nie D, Pan H, Chen Y, Liu X, Luan L, Han Z, et al. 2020. Reduced graphene oxide-zinc oxide nanocomposite as dispersive solid-phase extraction sorbent for simultaneous enrichment and purification of multiple mycotoxins in Coptidis rhizoma (Huanglian) and analysis by liquid chromatography tandem mass spectrometry. J Chromatogr A. 1630:461515. doi: 10.1016/j.chroma.2020.461515.
  • Tezerji NS, Foroughi MM, Bezenjani RR, Jandaghi N, Rezaeipour E, Rezvani F. 2020. A facile one-pot green synthesis of beta-cyclodextrin decorated porous graphene nanohybrid as a highly efficient adsorbent for extracting aflatoxins from maize and animal feeds. Food Chem. 311:125747. doi: 10.1016/j.foodchem.2019.125747.
  • Vasconcelos Soares Maciel E, Mejía-Carmona K, Lanças FM. 2020. Evaluation of two fully automated setups for mycotoxin analysis based on online extraction-liquid chromatography–tandem mass spectrometry. Molecules. 25(12):2756. doi: 10.3390/molecules25122756.
  • Wang J, Liu X-M. 2007. Contamination of aflatoxins in different kinds of foods in China. Biomed Environ Sci. 20:483–487.
  • Wang C, Wang Q, Yu J, Wang X, Wang L, Zhao B, Hao L, Liu W, Wang Z, Chen H, et al. 2023. Converting waste expanded polystyrene into higher-value-added hyper-crosslinked porous polymer for rapid and high-efficient adsorption of aflatoxins. J Clean Prod. 408:137102. doi: 10.1016/j.jclepro.2023.137102.
  • Wang Q, Zhang S, Li Z, Wang Z, Wang C, Alshehri SM, Bando Y, Yamauchi Y, Wu Q. 2023. Design of hyper-cross-linked polymers with tunable polarity for effective preconcentration of aflatoxins in grain. Chem Eng J. 453:139544. doi: 10.1016/j.cej.2022.139544.
  • Xu M, An Y, Wang Q, Wang J, Hao L, Wang C, Wang Z, Zhou J, Wu Q. 2021. Construction of hydroxyl functionalized magnetic porous organic framework for the effective detection of organic micropollutants in water, drink and cucumber samples. J Hazard Mater. 412:125307. doi: 10.1016/j.jhazmat.2021.125307.
  • Xu M, Wang J, Zhang L, Wang Q, Liu W, An Y, Hao L, Wang C, Wang Z, Wu Q. 2022. Construction of hydrophilic hypercrosslinked polymer based on natural kaempferol for highly effective extraction of 5-nitroimidazoles in environmental water, honey and fish samples. J Hazard Mater. 429:128288. doi: 10.1016/j.jhazmat.2022.128288.
  • Xu M, Zhou Z, Hao L, Li Z, Li J, Wang Q, Liu W, Wang C, Wang Z, Wu Q. 2023. Phenyl-imidazole based and nitrogen rich hyper-crosslinked polymer for sensitive determination of aflatoxins. Food Chem. 405:134847. doi: 10.1016/j.foodchem.2022.134847.
  • Ye F, Wang Z, Mi Y, Kuang J, Jiang X, Huang Z, Luo Y, Shen L, Yuan H, Zhang Z. 2020. Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater. Colloids Surf Physicochem Eng Aspects. 586:124251. doi: 10.1016/j.colsurfa.2019.124251.
  • Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. 2021. Occurrence of aflatoxin B(1), deoxynivalenol and zearalenone in feeds in China during 2018–2020. J Anim Sci Biotechnol. 12(1):74. doi: 10.1186/s40104-021-00603-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.