279
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simultaneous mitigation of 3-monochloropropane 1,2 diol ester and glycidyl ester in edible oils: a review

ORCID Icon, ORCID Icon, , &
Pages 1164-1182 | Received 15 Jan 2023, Accepted 08 Jul 2023, Published online: 07 Aug 2023

References

  • Aasa J, Vare D, Motwani HV, Jenssen D, Törnqvist M. 2016. Quantification of the mutagenic potency and repair of glycidol-induced DNA lesions. Mutat Res Genet Toxicol Environ Mutagen. 805:38–45. doi:10.1016/j.mrgentox.2016.05.011.
  • Abd Razak RA, Ahmad Tarmizi AH, Kuntom A, Sanny M, Ismail IS. 2021. Intermittent frying effect on French fries in palm olein, sunflower, soybean and canola oils on quality indices, 3-monochloropropane-1,2-diol esters (3-MCPDE), glycidyl esters (GE) and acrylamide contents. Food Control. 124:107887. doi:10.1016/j.foodcont.2021.107887.
  • Ahmad Tarmizi AH, Abd Razak RA, Abdul Hammid AN, Kuntom A. 2019. Effect of anti-clouding agent on the fate of 3-monochloropropane-1,2-diol esters and glycidyl esters in palm olein during repeated frying. Molecules., 24(12):2332. doi:10.3390/molecules24122332.
  • Alshuiael SM, Al-Ghouti MA. 2020. Multivariate analysis for FTIR in understanding treatment of used cooking oil using activated carbon prepared from olive stone. PLoS One. 15(5):e0232997. doi:10.1371/journal.pone.0232997.
  • Arisseto AP, Silva WC, Tivanello RG, Sampaio KA, Vicente E. 2018. Recent advances in toxicity and analytical methods of monochloropropanediols and glycidyl fatty acid esters in foods. Curr. Opin Food Sci. 24:36–42. doi:10.1016/j.cofs.2018.10.014.
  • Arris FA, Thai VTS, Manan WN, Sajab MS. 2020. A revisit to the formation and mitigation of 3-chloropropane-1,2-diol in palm oil production. Foods. 9(12):2–24. doi:10.3390/foods9121769.
  • Arslan M, Xiaobo Z, Shi J, Rakha A, Hu X, Zareef M, Zhai X, Basheer S. 2018. Oil uptake by potato chips or french fries: a review. Eur J Lipid Sci Technol. 120(10):1800058. doi:10.1002/ejlt.201800058.
  • Bakhiya N, Abraham K, Gürtler R, Appel KE, Lampen A. 2011. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol Nutr Food Res. 55(4):509–521. doi:10.1002/mnfr.201000550.
  • Ben Hammouda I, Zribi A, Ben Mansour A, Matthäus B, Bouaziz M. 2017. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. Eur Food Res Technol. 243(7):1219–1227. doi:10.1007/s00217-016-2836-4.
  • Bernal V, Giraldo L, Moreno-Piraján J. 2018. Physicochemical properties of activated carbon: their effect on the adsorption of pharmaceutical compounds and adsorbate–adsorbent interactions. J C Res. 4(4):62. doi:10.3390/c4040062.
  • Bognár E, Hellner G, Radnóti A, Somogyi L, Kemény Z. 2018. Formation of glycidyl esters during the deodorization of vegetable oils. Hungarian J Ind Chem. 46(2):67–71. doi:10.1515/hjic-2018-0021.
  • Buhrke T, Weisshaar R, Lampen A. 2011. Absorption and metabolism of the food contaminant 3-chloro-1,2-propanediol (3-MCPD) and its fatty acid esters by human intestinal caco-2 cells. Arch Toxicol. 85(10):1201–1208. doi:10.1007/s00204.
  • Chakrabarti PP, Reddy Jala RC. 2019. Processing technology of rice bran oil. In L.-Z. Cheong & X. Xu (editors). Rice bran and rice bran oil chemistry, processing and utilization. San Diego: AOCS Press; p. 55–95. doi:10.1016/B978-0-12-812828-2.00003-2.
  • Cheng W, Liu G, Wang X, Han L. 2017a. Adsorption removal of glycidyl esters from palm oil and oil model solution by using acid-washed oil palm wood-based activated carbon: kinetic and mechanism study. J Agric Food Chem. 65(44):9753–9762. doi:10.1021/acs.jafc.7b03121.
  • Cheng W-W, Liu G-Q, Wang L-Q, Liu Z-S. 2017b. Glycidyl fatty acid esters in refined edible oils: a review on formation, occurrence, analysis, and elimination methods. Compr Rev Food Sci Food Saf. 16(2):263–281. doi:10.1111/1541-4337.12251.
  • Chew CL, Kong PS, Ab Karim NA, Siah YT, Chan E-S. 2021. A sustainable in situ treatment method to improve the quality of crude palm oil by repurposing treated aerobic liquor. Food Bioprocess Technol. 14(4):679–691. doi:10.1007/s11947-021-02582-6/Published.
  • Chew CL, Ab Karim NA, Quek WP, Wong SK, Lee Y-Y, Chan E-S. 2021. Aerobic-liquor treatment improves the quality and deep-frying performance of refined palm oil. Food Control. 126:108072. doi:10.1016/j.foodcont.2021.108072.
  • Choe E, Min DB. 2007. Chemistry of deep-fat frying oils. J Food Sci. 72(5):77–86. doi:10.1111/j.1750-3841.2007.00352.x.
  • Chong JWR, Chan YJ, Chong S, Ho YC, Mohamad M, Tan WN, Cheng CK, Lim JW. 2021. Simulation and optimisation of integrated anaerobic-aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent. Processes. 9(7):1124. doi:10.3390/pr9071124.
  • Chwiałkowski W. 2004. Enhancing activated carbon adsorption of polar compounds from used frying oil: nitric acid and hydrogen peroxide treatments. 3rd Euro Fed Lipid Congress: oils, Fats and Lipids in a Changing World.
  • Craft BD, Nagy K, Seefelder W, Dubois M, Destaillats F. 2012. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part II: practical recommendations for effective mitigation. Food Chem. 132(1):73–79. doi:10.1016/j.foodchem.2011.10.034.
  • Demydova A, Nosenko T, Levchuk I. 2021. Influence of fat refining stages on the content of MCPD-esters and glycidyl esters in deodorated oils and methods of reducing their concentration. SWNUFT. 27(3):122–133. doi:10.24263/2225-2924-2021-27-3-15.
  • Destaillats F, Brian DC, Laurence S, Kornél N. 2012a. Formation mechanisms of Monochloropropanediol (MCPD) fatty/acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess29(1):29–37. doi:10.1080/19440049.2011.633493.
  • Destaillats F, Craft BD, Dubois M.,Nagy K. 2012b. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part I: formation mechanism. Food Chem. 131(4):1391–1398. doi:10.1016/j.foodchem.2011.10.006.
  • Destaillats F, Nagy K, Sandoz L, Craft B. 2012c. Plant oil refinement in the presence of alcohol. European Patent application number. 11159739.9. Patent EP 2 502 501 A1.
  • Di Pietro ME, Mannu A, Mele A. 2020. NMR determination of free fatty acids in vegetable oils. Processes. 8(4):1–15. doi:10.3390/pr8040410.
  • Dingel A, Matissek R. 2015. Esters of 3-monochloropropane-1,2-diol and glycidol: no formation by deep frying during large-scale production of potato crisps. Eur Food Res Technol. 241(5):719–723. doi:10.1007/s00217-015-2491-1.
  • Dornbusch M, Christ U, Rasing R. 2016. 2. Basic chemistry of the epoxy group. Epoxy Resins 21–100. doi:10.1515/9783748600305-003.
  • EFSA. 2016. Risks for human health related to the presence of 3‐ and 2‐monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. Efsa J. 14(5):1–159. doi:10.2903/j.efsa.2016.4426.
  • EFSA CONTAM Panel, Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, et al. 2018. Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA J. 16(1):5083. Publishing Ltd. doi:10.2903/j.efsa.2018.5083.
  • EU 2020/1322. 2020. COMMISSION REGULATION (EU) 2020/1322 amending Regulation (EC) No 1881/2006 as regards maximum levels of 3‐monochloropropanediol(3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. OJ L310/2:1–7.
  • Falk B. 2016. Removal of Unwanted Propanol Components. doi: Patent.No.:US20160298053. A1
  • Fedor G, Atkins MP, Hamer CK, Witthaut D, Boes U. 2019. Process for refining glyceride oil comprising a basic quaternary ammonium salt treatment.
  • Gharby S. 2022. Refining vegetable oils: chemical and physical refining. Sci World J 2022. 6627013:1–10. doi:10.1155/2022/6627013.
  • Gibon V, De Greyt W, Kellens M. 2007. Palm oil refining. Eur J Lipid Sci Technol. 109(4):315–335. doi:10.1002/ejlt.200600307.
  • Goh KM, Wong YH, Tan CP, Nyam KL. 2021. A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes: baking and frying process contaminants. Curr Res Food Sci. 4: 460–469. doi:10.1016/j.crfs.2021.07.002.
  • Gupta MK. 2017. Deodorization. In Practical guide to vegetable oil processing,2nd ed. Lynnwood: AOCS Press; p. 217–247. doi:10.1016/B978-1-63067-050-4.00008-8.
  • Hed K, Johansson M, Mellerup J. 2015. Reduction of MCPD-compound in refined plant oil for food (US 2015O166930A1).
  • Hellmann H, Goyer A, Navarre DA. 2021. Antioxidants in potatoes: a functional view on one of the major food crops worldwide. Molecules. 26(9):2446. doi:10.3390/molecules26092446.
  • Hew KS, Khor YP, Tan TB, Yusoff MM, Lai OM, Asis AJ, Alharthi FA, Nehdi IA, Tan CP. 2021. Mitigation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined palm oil: a new and optimized approach. LWT. 139:110612. doi:10.1016/j.lwt.2020.110612.[Mism*atch]
  • Hori K, Hashimoto Y, Itani A, Okada T, Tsumura K. 2021. Effects of neutralization combined with steam distillation on the formation of monochloropropanediol esters and glycidyl esters in palm oil under laboratory-scale conditions. LWT. 139:110783. doi:10.1016/j.lwt.2020.110783.
  • Hrncirik K, van Duijn G. 2011. An initial study on the formation of 3-MCPD esters during oil refining. Eur J Lipid Sci Technol. 113(3):374–379. doi:10.1002/ejlt.201000317.
  • Huang Z, Xie D, Cao Z, Guo Z, Chen L, Jiang L, Sui X, Wang Z. 2021. The effects of chloride and the antioxidant capacity of fried foods on 3-chloro-1,2-propanediol esters and glycidyl esters during long-term deep-frying. LWT. 145:111511. doi:10.1016/j.lwt.2021.111511.
  • IARC 2013. IARC Monographs- Some chemicals present in industrial and consumer products, food and drinking-water. 101. https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono101.pdf.
  • Ikeda N, Fujii K, Sarada M, Saito H, Kawabata M, Naruse K, Yuki K, Nakagiri H, Honda H, Tamaki Y, et al. 2012. Genotoxicity studies of glycidol fatty acid ester (glycidol linoleate) and glycidol. Food Chem Toxicol. 50(11):3927–3933. doi:10.1016/j.fct.2012.08.022.
  • Inagaki R, Uchino K, Shimamura Y, Masuda S. 2019. Investigation of DNA damage of glycidol and glycidol fatty acid esters using Fpg-modified comet assay. Fundam Toxicol Sci. 6(1):9–14. doi:10.2131/fts.6.9.
  • Japir AAW, Salimon J, Derawi D, Bahadi M, Yusop MR. 2016. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation. AIP Conference Proceedings, 1784. doi:10.1063/1.4966739.
  • Jędrkiewicz R, Kupska M, Głowacz A, Gromadzka J, Namieśnik J. 2016. 3-MCPD: a worldwide problem of food chemistry. Crit Rev Food Sci Nutr. 56(14):2268–2277. doi:10.1080/10408398.2013.829414.
  • Kalkan O, Topkafa M, Kara H. 2021. Determination of effect of some parameters on formation of 2-monochloropropanediol, 3-monochloropropanediol and glycidyl esters in the frying process with sunflower oil, by using central composite design. J Food Compos Anal. 96:103681. doi:10.1016/j.jfca.2020.103681.
  • Khosrokhavar R, Dizaji R, Nazari F, Sharafi A, Tajkey J, Hosseini MJ. 2021. The role of PGC-1α and metabolic signaling pathway in kidney injury following chronic administration with 3-MCPD as a food processing contaminant. J Food Biochem. 45(6):e13744. doi:10.1111/jfbc.13744.
  • Kövari K, Denise J, Kemény Z, Recseg K. 2000. Physical refining of sunflower oil. OCL. 7(4):305–308. doi:10.1051/ocl.2000.0305.
  • Kyselka J, Matějková K, Šmidrkal J, Berčíková M, Pešek E, Bělková B, Ilko V, Doležal M, Filip V. 2018. Elimination of 3-MCPD fatty acid esters and glycidyl esters during palm oil hydrogenation and wet fractionation. Eur Food Res Technol. 244(11):1887–1895. doi:10.1007/s00217-018-3101-9.
  • Lakshmanan S, Yung YL, Chan BS, Chong ZH. 2020. Environment & health an official publication of the Malaysian palm oil council (MPOC) Journal of Oil Palm. Environ Health. 11:42–56. doi:10.5366/jope.2020.05.
  • Lakshmanan S, Yung YL. 2021. Chloride reduction by water washing of crude palm oil to assist in 3-monochloropropane-1, 2 diol ester (3-MCPDE) mitigation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 38(3):371–387. doi:10.1080/19440049.2020.1842516.
  • Lakshmanan S, Yung YL, Chan BS, Chong ZH. 2023. Sustainable practices of ioi palm oil and palm kernel processing complex in Sabah. In: Foo CYD, Tun Abdul Aziz MK, Yusup S. editors. Sustainable technologies for the oil palm industry. Springer Nature Singapore. p. 345–379. doi:10.1007/978-981-19-4847-3_14.
  • Lee YJ, Khor YP, Kadir NSA, Lan D, Wang Y, Tan CP. 2023. Deep-fat frying using soybean oil-based diacylglycerol-palm olein oil blends: thermo-oxidative zstability, 3-MCPDE and glycidyl ester Formation. J Oleo Sci. 72(5):533–541. doi:10.5650/jos.ess22361.
  • Lee BQ., Khor SM. 2015. 3-chloropropane-1,2-diol (3-mcpd) in soy sauce: a review on the formation, reduction, and detection of this potential carcinogen. Compr Rev Food Sci Food Saf. 14(1):48–66. doi:10.1111/1541-4337.12120.
  • Lee JK, Byun JA, Park SH, Kim HS, Park JH, Eom JH, Oh HY. 2004. Evaluation of the potential immunotoxicity of 3-monochloro-1,2-propanediol in Balb/c mice: i. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity. Toxicology. 204(1):1–11. doi:10.1016/j.tox.2004.04.005.
  • Li C, Zhou Y, Zhu J, Wang S, Nie S, Xie M. 2016. Formation of 3-chloropropane-1,2-diol esters in model systems simulating thermal processing of edible oil. LWT. 69:586–592. doi:10.1016/j.lwt.2016.02.012.
  • Li J, Cai W, Sun D, Liu Y. 2016. A quick method for determining total polar compounds of frying oils using electric conductivity. Food Anal Methods. 9(5):1444–1450. doi:10.1007/s12161-015-0324-2.
  • Li P, Yang X, Lee WJ, Huang F, Wang Y, Li Y. 2021. Comparison between synthetic and rosemary-based antioxidants for the deep frying of French fries in refined soybean oils evaluated by chemical and non-destructive rapid methods. Food Chem. 335:127638. doi:10.1016/j.foodchem.2020.127638.
  • MacMahon S, Begley TH, Diachenko GW. 2013a. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 30(12):2081–2092. doi:10.1080/19440049.2013.840805.
  • MacMahon S, Mazzola E, Begley TH, Diachenko GW. 2013b. Analysis of processing contaminants in edible oils. Part 1. Liquid chromatography-tandem mass spectrometry method for the direct detection of 3-monochloropropanediol monoesters and glycidyl esters. J Agric Food Chem. 61(20):4737–4747. doi:10.1021/jf4005803.
  • Marsh H, Rodríguez-Reinoso F. 2006. Applicability of activated carbon. In: Marsh H, Rodríguez-Reinoso F, editors. Activated Carbon. Elsevier Science Ltd; p. 383–453.
  • Matthäus B, Pudel F. 2013. Mitigation of 3-MCPD and glycidyl esters within the production chain of vegetable oils especially palm oil. Lipid Technol. 25(7):151–155. doi:10.1002/lite.201300288.
  • Matthaus B, Pudel F. 2022. Mitigation of MCPD and glycidyl esters in edible oils. In Shaun MacMahon & Jessica K. Beekman (editors), Processing contaminants in edible oils: MCPD and Glycidyl Esters (second). Elsevier. https://b–ooks.google.com.my/books?id=QcwnEAAAQBAJ&dq=DAG+did+not+appear+to+be+a+critical+factor+in+the+formation+of+3-MCPD+esters+when+crude+palm+oils+are+extracted+from+various+qualities+of+fruit+bunches&source=gbs_navlinks_s.
  • Matthäus B, Pudel F, Fehling P, Vosmann K, Freudenstein A. 2011. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur J Lipid Sci Technol. 113(3):380–386. doi:10.1002/ejlt.201000300.
  • Muller EA, Gubbins KE. 1998. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon. 36(10):1433–1438. doi:10.1016/S0008-6223(98)00135-3.
  • Murphy DJ, Goggin K, Paterson RRM. 2021. Oil palm in the 2020s and beyond: challenges and solutions. CABI Agric Biosci. 2(1):1–22. doi:10.1186/s43170-021-00058-3.
  • Nguyen KH, Fromberg A, Duedahl-Olesen L, Christensen T, Granby K. 2022. Processing contaminants in potato and other vegetable crisps on the Danish market: levels and estimation of exposure. J Food Compos Anal. 108:104411. doi:10.1016/j.jfca.2022.104411.
  • Oey SB, van der Fels-Klerx HJ, Fogliano V, van Leeuwen SPJ. 2019. Mitigation Strategies for the reduction of 2- and 3-MCPD esters and glycidyl esters in the vegetable oil processing industry. Compr Rev Food Sci Food Safety. 18( 2):349–361. doi:10.1111/1541-4337.12415.
  • Oey SB, van der Fels-Klerx HJ, Fogliano V, van Leeuwen SPJ. 2022. Chemical refining methods effectively mitigate 2-MCPD esters, 3-MCPD esters, and glycidyl esters formation in refined vegetable oils. Food Res Int. 156:111137. doi:10.1016/j.foodres.2022.111137.
  • Özdikicierler O, Yemişçioğlu F, Saygın Gümüşkesen A. 2016. Effects of process parameters on 3-MCPD and glycidyl ester formation during steam distillation of olive oil and olive pomace oil. Eur Food Res Technol. 242(5):805–813. doi:10.1007/s00217-015-2587-7.
  • Pal US, Patra RK, Sahoo NR, Bakhara CK, Panda MK. 2015. Effect of refining on quality and composition of sunflower oil. J Food Sci Technol. 52(7):4613–4618. doi:10.1007/s13197-014-1461-0.
  • Pan D, Jaroniec M. 1996. Adsorption and thermogravimetric studies of unmodified and oxidized active carbons. Langmuir. 12(15):3657–3665. doi:10.1021/la951549s.
  • Pharma D, Haile B, Satheesh N. 2017. Review on 3-chloro-1,2-propanediol: a chloropropanol formed during food processing. Der Pharma Chemica. 9(7):84–90. www.derpharmachemica.com.
  • Pudel F, Benecke P, Vosmann K, Matthäus, B. 2016. 3-MCPD and glycidyl esters can be mitigated in vegetable oils by use of shortpath distillation. Eur J Lipid Sci Technol. 118(3):396–405. doi:10.1002/ejlt.201500095.
  • Quinlivan PA, Li L, Knappe DRU. 2005. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res. 39(8):1663–1673. doi:10.1016/j.watres.2005.01.029.
  • Rahn AKK, Yaylayan VA. 2011. What do we know about the molecular mechanism of 3-MCPD ester formation? Eur J Lipid Sci Technol. 113(3):323–329. doi:10.1002/ejlt.201000310.
  • Ramli MR, Tarmizi AHA, Hammid ANA, Razak RAA, Kuntom A, L-in SW, Radzian R. 2020. Preliminary large scale mitigation of 3-monochloropropane-1, 2-diol (3-mcpd) esters and glycidyl esters in palm oil. J Oleo Sci. 69(8):815–824. doi:10.5650/jos.ess20021.
  • Ramli MR, Wai Lin S, Ibrahim NA, Kuntom A, Abd. Razak RA. 2015. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(6):817–824. doi:10.1080/19440049.2015.1032368.
  • Restiawaty E, Maulana A, Umi Culsum NT, Aslan C, Suendo V, Nishiyama N, Budhi YW. 2021. The removal of 3-monochloropropane-1,2-diol ester and glycidyl ester from refined-bleached and deodorized palm oil using activated carbon. RSC Adv. 11(27):16500–16509. doi:10.1039/d1ra00704a.
  • Sadowska-Rociek A. 2019. The effects of adding “flavour enhancers” on levels of chloropropanediol esters and glycidyl esters in savoury shortbread. Eur Food Res Technol. 245(2):489–498. doi:10.1007/s00217-018-3180-7.
  • Şahin T, Ok S, Yılmaz E. 2022. Application of MOFs and natural clays for removal of MCPD and GEs from edible oils. grasasaceites. 73(2):e461. doi:10.3989/gya.0556211.
  • Sales-Cruz M, Gani R. 2005. Short-path evaporation for chemical product modelling analysis and design. In: Puigjaner L, Espuña A. editors. Computer aided chemical engineering. Elsevier; vol. 20, p. 841–846. doi:10.1016/S1570-7946(05)80262-7
  • Santiago JK, Silva WC, Capristo MF, Ferreira MC, Ferrari RA, Vicente E, Meirelles AJA, Arisseto AP, Sampaio KA. 2021. Organic, conventional and sustainable palm oil (RSPO): formation of 2- and 3-MCPD esters and glycidyl esters and influence of aqueous washing on their reduction. Food Res Int. 140:109998. doi:10.1016/j.foodres.2020.109998.
  • Saunders D, Molyneux S, Sitthirit P, Nicolas J, & New Zealand Food Safety (Government agency) 2020. Snapshot survey for 2-MCPD, 3-MCPD, glycidol and their esters in selected vegetable oils and infant formulas in Australia and New Zealand : prepared for New Zealand Food Safety. New Zealand Food Safety Technical Paper No: 2020/05, 1–45. http://www.mpi.govt.nz/news-and-resources/publications/.
  • Shahbandeh M. 2023. Vegetable oils: global consumption 2013/14 to 2022/23, by oil type. https://www.statista.com/statistics/263937/vegetable-oils-global-consumption/.
  • Shahidi F, Zhong HJ. 2020. Methods for measuring lipid oxidation. In: Shahidi F, editor. Bailey’s Industrial Oil and Fat Products. New Jersey: Wiley; p. 409–436. doi:10.1002/047167849x.bio050.pub2.
  • Shimamura Y, Inagaki R, Oike M, Dong B, Gong W, Masuda S. 2021. Glycidol fatty acid ester and 3-monochloropropane-1,2-diol fatty acid ester in commercially prepared foods. Foods. 10(12):2905. doi:10.3390/foods10122905.
  • Shimamura Y, Inagaki R, Oike M, Wada Y, Honda H, Masuda S. 2023. Potential role of lipase activity on the internal exposure assessment of glycidol released from its fatty acid esters. Toxics. 11(2):175. doi:10.3390/toxics11020175.
  • Silva WC, Santiago JK, Capristo MF, Ferrari RA, Vicente E, Sampaio KA, Arisseto AP. 2019. Washing bleached palm oil to reduce monochloropropanediols and glycidyl esters. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36(2):244–253. doi:10.1080/19440049.2019.1566785.
  • Sim BI, Khor YP, Lai OM, Yeoh CB, Wang Y, Liu Y, Nehdi IA, Tan CP. 2020. Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chem. 328:127147. doi:10.1016/j.foodchem.2020.127147.
  • Sim BI, Muhamad H, Lai OM, Abas F, Yeoh CB, Nehdi IA, Khor YP, Tan CP. 2018. New insights on degumming and bleaching process parameters on the formation of 3-monochloropropane-1,2-diol esters and glycidyl esters in refined, bleached, deodorized palm oil. J Oleo Sci. 67(4):397–406. doi:10.5650/jos.ess17210.
  • Statista 2023. Edible Oils - Worldwide. https://www.statista.com/outlook/cmo/food/oils-fats/edible-oils/worldwide.
  • Strijowski U, Heinz V, Franke K. 2011. Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur J Lipid Sci Technol. 113(3):387–392. doi:10.1002/ejlt.201000323.
  • Tan CP, Zulkurnain M, Lai OM. 2014. An improved palm oil refining process. doi: WO2014081279A1.
  • Tiong SH, Nair A, Siti SA, Saparin N, Nur NA, Ahmad Sabri MP, Mohd MZ, Teh HF, Adni AS, Ping Tan C, et al. 2021. Palm oil supply chain factors impacting chlorinated precursors of 3-MCPD esters. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 38(12):2012–2025. doi:10.1080/19440049.2021.1960430.
  • Tiong SH, Saparin N, Teh HF, Ng TLM, Md Zain MZ, Bin Neoh BK, Md Noor A, Tan CP, Lai OM, Appleton DR. 2018. Natural organochlorines as precursors of 3-monochloropropanediol esters in vegetable oils. J Agric Food Chem. 66(4):999–1007. doi:10.1021/acs.jafc.7b04995.
  • Tivanello RG, Capristo MF, Leme FM, Ferrari RA, Sampaio KA, Arisseto AP, Vicente E. 2021. Mitigation studies based on the contribution of chlorides and acids to the formation of 3-MCPD, 2-MCPD, and Glycidyl esters in palm oil. ACS Food Sci Technol. 1(7):1190–1197. doi:10.1021/acsfoodscitech.1c00084.
  • Turan S, Solak R, Keskin S. 2019. Investigation of the formation of free and bound 2- and 3-monochloropropane-1,2-diols during deep frying of leavened dough using response surface methodology. Eur J Lipid Sci Technol. 121(7):1800019. doi:10.1002/ejlt.201800019.
  • Urugo MM, Teka TA, Teshome PG, Tringo TT. 2021. Palm oil processing and controversies over its health effect: overview of positive and negative consequences. J Oleo Sci. 70(12):1693–1706. doi:10.5650/jos.ess21160.
  • Voora V, Bermúdez S, Farrell JJ, Larrea C, Luna E. 2023. Palm oil prices and sustainability sustainable commodities marketplace series.
  • Wang R, Tao M, Zhu Y, Fan D, Wang M, Zhao Y. 2021. Puerarin inhibited 3-chloropropane-1,2-diol fatty acid esters formation by reacting with glycidol and glycidyl esters. Food Chem. 358:129843. doi:10.1016/j.foodchem.2021.129843.
  • Weißhaar R, Perz R. 2010. Fatty acid esters of glycidol in refined fats and oils. Eur J Lipid Sci Technol. 112(2):158–165. doi:10.1002/ejlt.200900137.
  • Wong YH, Goh KM, Nyam KL, Cheong LZ, Wang Y, Nehdi IA, Mansour L, Tan CP. 2020. Monitoring of heat-induced carcinogenic compounds (3-monochloropropane-1,2-diol esters and glycidyl esters) in fries. Sci Rep. 10(1):15110. doi:10.1038/s41598-020-72118-z.
  • Wong YH, Goh KM, Nyam KL, Nehdi IA, Sbihi HM, Tan CP. 2019. Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Control. 96:488–493. doi:10.1016/j.foodcont.2018.10.006.
  • Wong YH, Lai OM, Abas F, Nyam KL, Nehdi IA, Muhamad H, Tan CP. 2017. Factors impacting the formation of 3-MCPD esters and glycidyl esters during deep fat frying of chicken breast meat. J Am Oil Chem Soc. 94(6):759–765. doi:10.1007/s11746-017-2991-1.
  • Wong YH, Muhamad H, Abas F, Lai OM, Nyam KL, Tan CP. 2017. Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem. 219:126–130. doi:10.1016/j.foodchem.2016.09.130.
  • Wu PY, Chen H, Su NW, Chiou TY, Lee WJ. 2021. First determination of glycidyl ester species in edible oils by reverse-phase ultra-performance liquid chromatography coupled with an evaporative light-scattering detector. Molecules. 26, 2702(9):1–11.
  • Xing H, Chen S, Wang X, Li J, Ren F. 2022. 3-Monochloropropane-1,2-diol causes spermatogenesis failure in male rats via Sertoli cell dysfunction but not testosterone reduction. Toxicol Lett. 360:1–10. doi:10.1016/j.toxlet.2022.01.006.
  • Xu M, Jin Z, Yang Z, Rao J, Chen B. 2020. Optimization and validation of in-situ derivatization and headspace solid-phase microextraction for gas chromatography–mass spectrometry analysis of 3-MCPD esters, 2-MCPD esters and glycidyl esters in edible oils via central composite design. Food Chem. 307:125542. doi:10.1016/j.foodchem.2019.125542.
  • Xu M, Thompson A, Chen B. 2022. Dynamic changes of 3-MCPD esters and glycidyl esters contents as well as oil quality during repeated deep-frying. LWT. 153:112568. doi:10.1016/j.lwt.2021.112568.
  • Ye Q. 2020. Strategies to Inhibit the Formation of 3-monochloropropane diol during deep-fat frying [dissertation]. Fargo, North Dakota: North Dakota State University.
  • Yıldırım A, Yorulmaz A. 2018. The effect of rosemary extract on 3-MCPD and glycidyl esters during frying. Grasas Aceites. 69(4):273. doi:10.3989/gya.0347181.
  • Yuan Y, Cui C, Liu H, Li X, Cao Y, Zhang Y, Yan H. 2022. Effects of oxidation and hydrolysis of frying oil on MCPD esters formation in Chinese fried dough sticks. LWT. 154:112576. doi:10.1016/j.lwt.2021.112576.
  • Zelinková Z, Svejkovská B, Velíšek M, Doležal M. 2006. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit Contam. 23(12):1290–1298. doi:10.1080/02652030600887628.
  • Zhang J, Zhang W, Zhang Y, Huang M, Sun B. 2021. Effects of food types, frying frequency, and frying temperature on 3-monochloropropane-1,2-diol esters and glycidyl esters content in palm oil during frying. Foods. 10(10):2266. doi:10.3390/foods10102266.
  • Zhang Y, Li Y, Xiangli Q, Lina C, Xiangjun N, Zhijian M, Zhang Z. 2008. Integration of biological method and membrane technology in treating palm oil mill effluent. J Environ Sci. 20(5):558–564. doi:10.1016/S1001-0742(08)62094-X.
  • Zhao Y, Zhang Y, Zhang Z, Liu J, Wang YL, Gao B, Niu Y, Sun X, Yu L. 2016. Formation of 3-MCPD fatty acid esters from monostearoyl Glycerol and the thermal stability of 3-MCPD monoesters. J Agric Food Chem. 64(46):8918–8926. doi:10.1021/acs.jafc.6b04048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.