211
Views
0
CrossRef citations to date
0
Altmetric
Articles

Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains

ORCID Icon, , , &
Pages 1242-1263 | Received 28 Mar 2023, Accepted 13 Jul 2023, Published online: 07 Aug 2023

References

  • Aiko V, Edamana P, Mehta A. 2016. Decomposition and detoxification of aflatoxin B1 by lactic acid. J Sci Food Agric. 96(6):1959–1966. doi:10.1002/jsfa.7304.
  • Aldred D, Cairns-Fuller V, Magan N. 2008. Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. J Stored Prod Res. 44(4):341–346. doi:10.1016/j.jspr.2008.03.004.
  • Anžlovar S, Janeš D, Koce JD. 2020. The effect of extracts and essential oil from invasive Solidago spp. and Fallopia japonica on crop-borne fungi and wheat germination. Food Technol Biotechnol. 58(3):273–283. doi:10.17113/ftb.58.03.20.6635.
  • Anzlovar S, Likar M, Koce JD. 2017. Antifungal potential of thyme essential oil as a preservative for storage of wheat seeds. Acta Bot Croat. 76(1):64–71. doi:10.1515/botcro-2016-0044.
  • Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils–a review. Food Chem Toxicol. 46(2):446–475. doi:10.1016/j.fct.2007.09.106.
  • Bassolé NI, Juliani RH. 2012. Essential oils in combination and their antimicrobial properties. Molecules. 17(4):3989–4006. Pages doi:10.3390/molecules17043989.
  • Belasli A, Ben Miri Y, Aboudaou M, Aït Ouahioune L, Montañes L, Ariño A, Djenane D. 2020. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): potential use as wheat preservative. Food Sci Nutr. 8(9):4717–4729. doi:10.1002/fsn3.1650.
  • Bluma RV, Etcheverry MG. 2008. Application of essential oils in maize grain: impact on Aspergillus section Flavi growth parameters and aflatoxin accumulation. Food Microbiol. 25(2):324–334. doi:10.1016/j.fm.2007.10.004.
  • Bocate KP, Evangelista AG, Luciano FB. 2021. Garlic essential oil as an antifungal and anti-mycotoxin agent in stored corn. LWT- Food Sci Technol. 147:111600. doi:10.1016/j.lwt.2021.111600.
  • Burt S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 94(3):223–253. doi:10.1016/j.ijfoodmicro.2004.03.022.
  • Calo JR, Crandall PG, O'Bryan CA, Ricke SC. 2015. Essential oils as antimicrobials in food systems–a review. Food Control. 54:111–119. doi:10.1016/j.foodcont.2014.12.040.
  • Candlish AAG, Pearson SM, Aidoo KE, Smith JE, Kelly B, Irvine H. 2001. A survey of ethnic foods for microbial quality and aflatoxin content. Food Addit Contam. 18(2):129–136. doi:10.1080/02652030010021404.
  • Castro JC, Pante GC, Centenaro BM, Almeida RTRD, Pilau EJ, Dias Filho BP, Mossini SAG, Abreu Filho BAD, Matioli G, Machinski Junior M. 2020. Antifungal and antimycotoxigenic effects of Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii essential oils against Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 37(9):1531–1541. doi:10.1080/19440049.2020.1778183.
  • Cecchini C, Silvi S, Cresci A, Piciotti A, Caprioli G, Papa F, Sagratini G, Vittori S, Maggi F. 2012. Antimicrobial efficacy of Achillea ligustica All.(Asteraceae) essential oils against reference and isolated oral microorganisms. Chem Biodivers. 9(1):12–24. doi:10.1002/cbdv.201100249.
  • Chaudhari AK, Dwivedy AK, Singh VK, Das S, Singh A, Dubey NK. 2019. Essential oils and their bioactive compounds as green preservatives against fungal and mycotoxin contamination of food commodities with special reference to their nanoencapsulation. Environ Sci Pollut Res Int. 26(25):25414–25431. doi:10.1007/s11356-019-05932-2.
  • Chevtzoff C, Yoboue ED, Galinier A, Casteilla L, Daignan-Fornier B, Rigoulet M, Devin A. 2010. Reactive oxygen species-mediated regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. J Biol Chem. 285(3):1733–1742. doi:10.1074/jbc.M109.019570.
  • Correa ANR, Ferreira CD. 2022. Essential oil for the control of fungi, bacteria, yeasts and viruses in food: an overview. Crit Rev Food Sci Nutr. 1–15. doi:10.1080/10408398.2022.2062588.
  • Costa-Orlandi C, Sardi J, Pitangui N, de Oliveira H, Scorzoni L, Galeane M, Medina-Alarcón K, Melo W, Marcelino M, Braz J, et al. 2017. Fungal biofilms and polymicrobial diseases. J Fungi . 3(2):22. doi:10.3390/jof3020022.
  • Dambolena JS, Zunino MP, López AG, Rubinstein HR, Zygadlo JA, Mwangi JW, Thoithi GN, Kibwage IO, Mwalukumbi JM, Kariuki ST. 2010. Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Sci Emerg Technol. 11(2):410–414. doi:10.1016/j.ifset.2009.08.005.
  • Das S, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. 2021. Eugenol loaded chitosan nanoemulsion for food protection and inhibition of Aflatoxin B1 synthesizing genes based on molecular docking. Carbohydr Polym. 255:117339. doi:10.1016/j.carbpol.2020.117339.
  • Dávila-Rodríguez M, López-Malo A, Palou E, Ramírez-Corona N, Jiménez-Munguía M. 2020. Essential oils microemulsions prepared with high-frequency ultrasound: physical properties and antimicrobial activity. J Food Sci Technol. 57(11):4133–4142. doi:10.1007/s13197-020-04449-8.
  • de Oliveira EF, Paula HC, de Paula RC. 2014. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces. 113:146–151. doi:10.1016/j.colsurfb.2013.08.038.
  • Debonne E, Van Bockstaele F, Samapundo S, Eeckhout M, Devlieghere F. 2018. The use of essential oils as natural antifungal preservatives in bread products. J Essent Oil Res. 30(5):309–318. doi:10.1080/10412905.2018.1486239.
  • Deng L, Yu L, Taxipalati M, Zhang H. 2013. The research progress on nanoemulsion and microemulsion. J Chin Inst Food Sci Technol. 13:173–180.
  • Donsì F, Annunziata M, Sessa M, Ferrari G. 2011. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol. 44(9):1908–1914. doi:10.1016/j.lwt.2011.03.003.
  • Dwivedy AK, Kumar M, Upadhyay N, Prakash B, Dubey NK. 2016. Plant essential oils against food borne fungi and mycotoxins. Curr Opin Food Sci. 11:16–21. doi:10.1016/j.cofs.2016.08.010.
  • El Khoury R, Atoui A, Verheecke C, Maroun R, El Khoury A, Mathieu F. 2016. Essential oils modulate gene expression and ochratoxin A production in Aspergillus carbonarius. Toxins. 8:242. doi:10.3390/toxins8080242.
  • El-Desouky TA. 2022. Protect peanut kernels from Aspergillus spp and their mycotoxins during storage by aqueous extract of carob pulp. Discov Food. 2(1):12. doi:10.1007/s44187-022-00026-4.
  • Eljazi JS, Zarroug Y, Aouini J, Salem N, Bachrouch O, Boushih E, Jallouli S, Jemâa JMB, Limam F. 2020. Insecticidal activity of Artemisia herba-alba and effects on wheat flour quality in storage. J Plant Dis Prot. 127(3):323–333. doi:10.1007/s41348-020-00322-0.
  • Esper RH, Gonçalez E, Marques MO, Felicio RC, Felicio JD. 2014. Potential of essential oils for protection of grains contaminated by aflatoxin produced by Aspergillus flavus. Front Microbiol. 5:269. doi:10.3389/fmicb.2014.00269.
  • Fancello F, Petretto GL, Marceddu S, Venditti T, Pintore G, Zara G, Mannazzu I, Budroni M, Zara S. 2020. Antimicrobial activity of gaseous Citrus limon var pompia leaf essential oil against Listeria monocytogenes on ricotta salata cheese. Food Microbiol. 87:103386. doi:10.1016/j.fm.2019.103386.
  • Fasihi H, Fazilati M, Hashemi M, Noshirvani N. 2017. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydr Polym. 167:79–89. doi:10.1016/j.carbpol.2017.03.017.
  • Feng X, Sun Y, Yang Y, Zhou X, Cen K, Yu C, Xu T, Tang X. 2020. Zein nanoparticle stabilized pickering emulsion enriched with cinnamon oil and its effects on pound cakes. LWT. 122:109025. doi:10.1016/j.lwt.2020.109025.
  • Ferreira FMD, Hirooka EY, Ferreira FD, Silva MV, Mossini SAG, Machinski M. 2018. Effect of Zingiber officinale Roscoe essential oil in fungus control and deoxynivalenol production of Fusarium graminearum Schwabe in vitro. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(11):2168–2174. doi:10.1080/19440049.2018.1520397.
  • Flanagan J, Singh H. 2006. Microemulsions: a potential delivery system for bioactives in food. Crit Rev Food Sci Nutr. 46(3):221–237. doi:10.1080/10408690590956710.
  • García-Díaz M, Gil-Serna J, Patiño B, García-Cela E, Magan N, Medina Á. 2020. Assessment of the effect of Satureja montana and Origanum virens essential oils on Aspergillus flavus growth and aflatoxin production at different water activities. Toxins. 12:142. doi:10.3390/toxins12030142.
  • García-Díaz M, Patiño B, Vázquez C, Gil-Serna J. 2019. A novel niosome-encapsulated essential oil formulation to prevent Aspergillus flavus growth and aflatoxin contamination of maize grains during storage. Toxins. 11:646. doi:10.3390/toxins11110646.
  • Girardi NS, García D, Passone MA, Nesci A, Etcheverry M. 2017. Microencapsulation of Lippia turbinata essential oil and its impact on peanut seed quality preservation. Int Biodeterior Biodegrad. 116:227–233. doi:10.1016/j.ibiod.2016.11.003.
  • Girardi NS, García D, Robledo SN, Passone MA, Nesci A, Etcheverry M. 2016. Microencapsulation of Peumus boldus oil by complex coacervation to provide peanut seeds protection against fungal pathogens. Ind Crops Prod. 92:93–101. doi:10.1016/j.indcrop.2016.07.045.
  • Gwiazdowska D, Marchwińska K, Juś K, Uwineza PA, Gwiazdowski R, Waśkiewicz A, Kierzek R. 2022. The concentration-dependent effects of essential oils on the growth of fusarium graminearum and mycotoxins biosynthesis in wheat and maize grain. Appl Sci. 12(1):473. doi:10.3390/app12010473.
  • He F, Wang W, Wu M, Fang Y, Wang S, Yang Y, Ye C, Xiang F. 2020. Antioxidant and antibacterial activities of essential oil from Atractylodes lancea rhizomes. Ind Crops Prod. 153:112552. doi:10.1016/j.indcrop.2020.112552.
  • Hu Y, Zhang J, Kong W, Zhao G, Yang M. 2017. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 220:1–8. doi:10.1016/j.foodchem.2016.09.179.
  • Hu Z, Lu C, Zhang Y, Tong W, Du L, Liu F. 2022. Proteomic analysis of Aspergillus flavus reveals the antifungal action of Perilla frutescens essential oil by interfering with energy metabolism and defense function. LWT. 154:112660. doi:10.1016/j.lwt.2021.112660.
  • Iseppi R, Tardugno R, Brighenti V, Benvenuti S, Sabia C, Pellati F, Messi P. 2020. Phytochemical composition and in vitro antimicrobial activity of essential oils from the lamiaceae family against Streptococcus agalactiae and Candida albicans biofilms. Antibiotics. 9(9):592. doi:10.3390/antibiotics9090592.
  • Jiang H, Qi X, Zhong S, Schwarz P, Chen B, Rao J. 2023. Effect of treatment of Fusarium head blight infected barley grains with hop essential oil nanoemulsion on the quality and safety of malted barley. Food Chem. 421:136172. doi:10.1016/j.foodchem.2023.136172.
  • Jin W, Xu W, Liang H, Li Y, Liu S, Li B. 2016. Nanoemulsions for food: properties, production, characterization, and applications. In: Grumezescu AM, editor. Emulsions. Academic Press Publisher; p. 1–36.
  • Ju J, Guo Y, Cheng Y, Yaoc W. 2022. Analysis of the synergistic antifungal mechanism of small molecular combinations of essential oils at the molecular level. Ind Crops Prod. 188:115612. doi:10.1016/j.indcrop.2022.115612.
  • Ju J, Xie Y, Yu H, Guo Y, Cheng Y, Zhang R, Yao W. 2020. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind Crops Prod. 149:112349. doi:10.1016/j.indcrop.2020.112349.
  • Ju J, Xu X, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. 2018. Inhibitory effects of cinnamon and clove essential oils on mold growth on baked foods. Food Chem. 240:850–855. doi:10.1016/j.foodchem.2017.07.120.
  • Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, et al. 2016. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 32(4):179–205. doi:10.1007/s12550-016-0257-7.
  • Kohiyama CY, Yamamoto Ribeiro MM, Mossini SAG, Bando E, Bomfim N. d S, Nerilo SB, Rocha GHO, Grespan R, Mikcha JMG, Machinski M. 2015. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 173:1006–1010. doi:10.1016/j.foodchem.2014.10.135.
  • Kong J, Zhang Y, Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Quek SY, Yao W. 2019. Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chem. 285:380–388. doi:10.1016/j.foodchem.2019.01.099.
  • Kordali S, Cakir A, Sutay S. 2007. Inhibitory effects of monoterpenes on seed germination and seedling growth. Z Naturforsch C J Biosci. 62(3–4):207–214. doi:10.1515/znc-2007-3-409.
  • Kordali S, Kotan R, Mavi A, Cakir A, Ala A, Yildirim A. 2005. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J Agric Food Chem. 53(24):9452–9458. doi:10.1021/jf0516538.
  • Kottapalli B, Wolf-Hall CE, Schwarz P. 2006. Effect of electron-beam irradiation on the safety and quality of Fusarium-infected malting barley. Int J Food Microbiol. 110(3):224–231. doi:10.1016/j.ijfoodmicro.2006.04.007.
  • Krzyśko-Łupicka T, Sokół S, Sporek M, Piekarska-Stachowiak A, Walkowiak-Lubczyk W, Sudoł A. 2021. Effectiveness of the influence of selected essential oils on the growth of parasitic fusarium isolated from wheat kernels from central europe. Molecules. 26:6488. doi:10.3390/molecules26216488.
  • Kumar P, Mahato DK, Gupta A, Pandey S, Paul V, Saurabh V, Pandey AK, Selvakumar R, Barua S, Kapri M. 2022. Nivalenol mycotoxin concerns in foods: an overview on occurrence, impact on human and animal health and its detection and management strategies. Toxins. 14:527. doi:10.3390/toxins14080527.
  • Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. 2022. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol. 57(4):2171–2184. doi:10.1111/ijfs.15563.
  • Kumar P, Mishra S, Kumar A, Sharma AK. 2016. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp. J Food Sci Technol. 53(10):3725–3734. doi:10.1007/s13197-016-2347-0.
  • Li Q, Zhao Y, Zuo X, Guo F, Li Y, Xie Y. 2022. Paeonol inhibits Aspergillus flavus via disrupting ergosterol biosynthesis, redox metabolism, and aflatoxin biosynthesis on rice. LWT. 163:113587. doi:10.1016/j.lwt.2022.113587.
  • Li Q, Zhu X, Xie Y, Liang J. 2021. Antifungal properties and mechanisms of three volatile aldehydes (octanal, nonanal and decanal) on Aspergillus flavus. Grain Oil Sci Technol. 4(3):131–140. doi:10.1016/j.gaost.2021.07.002.
  • Li Y, Kong W, Li M, Liu H, Zhao X, Yang S, Yang M. 2016. Litsea cubeba essential oil as the potential natural fumigant: inhibition of Aspergillus flavus and AFB1 production in licorice. Ind Crops Prod. 80:186–193. doi:10.1016/j.indcrop.2015.11.008.
  • Li YX, Erhunmwunsee F, Liu M, Yang K, Zheng W, Tian J. 2022. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chem. 382:132312. doi:10.1016/j.foodchem.2022.132312.
  • Li Y-X, Zhang C, Pan S, Chen L, Liu M, Yang K, Zeng X, Tian J. 2020. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT. 117:108644. doi:10.1016/j.lwt.2019.108644.
  • Liu C, Mishra A, Tan R, Tang C, Yang H, Shen Y. 2006. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresour Technol. 97(15):1969–1973. doi:10.1016/j.biortech.2005.09.002.
  • Liu Y, Wang R, Zhao L, Huo S, Liu S, Zhang H, Tani A, Lv H. 2022. The antifungal activity of cinnamon-litsea combined essential oil against dominant fungal strains of moldy peanut kernels. Foods. 11:1586. doi:10.3390/foods11111586.
  • López-Meneses AK, Plascencia-Jatomea M, Lizardi-Mendoza J, Fernández-Quiroz D, Rodríguez-Félix F, Mouriño-Pérez RR, Cortez-Rocha MO. 2018. Schinus molle L. essential oil-loaded chitosan nanoparticles: preparation, characterization, antifungal and anti-aflatoxigenic properties. Lwt. 96:597–603. doi:10.1016/j.lwt.2018.06.013.
  • Magan N, Aldred D, Mylona K, Lambert R. 2010. Limiting mycotoxins in stored wheat. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 27(5):644–650. doi:10.1080/19440040903514523.
  • Manso S, Pezo D, Gómez-Lus R, Nerín C. 2014. Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control. 45:101–108. doi:10.1016/j.foodcont.2014.04.031.
  • Markov K, Mihaljević B, Domijan A-M, Pleadin J, Delaš F, Frece J. 2015. Inactivation of aflatoxigenic fungi and the reduction of aflatoxin B1 in vitro and in situ using gamma irradiation. Food Control. 54:79–85. doi:10.1016/j.foodcont.2015.01.036.
  • McClements DJ. 2020. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnol Adv. 38:107287. doi:10.1016/j.biotechadv.2018.08.004.
  • Mirza Alizadeh A, Golzan SA, Mahdavi A, Dakhili S, Torki Z, Hosseini H. 2022. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Crit Rev Food Sci Nutr. 62(17):4726–4751. doi:10.1080/10408398.2021.1878102.
  • Mohamed C, Etienne TV, Yannick KNG. 2020. Use of bioactive chitosan and Lippia multiflora essential oil as coatings for maize and sorghum seeds protection. EurAsian J BioSci. 14:27–34.
  • Naveen Kumar K, Venkataramana M, Allen JA, Chandranayaka S, Murali HS, Batra HV. 2016. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT-Food Sci Technol. 69:522–528. doi:10.1016/j.lwt.2016.02.005.
  • Niu A, Wu H, Ma F, Tan S, Wang G, Qiu W. 2022. The antifungal activity of cinnamaldehyde in vapor phase against Aspergillus niger isolated from spoiled paddy. LWT. 159:113181. doi:10.1016/j.lwt.2022.113181.
  • Nogueira JH, Gonçalez E, Galleti SR, Facanali R, Marques MO, Felício JD. 2010. Ageratum conyzoides essential oil as aflatoxin suppressor of Aspergillus flavus. Int J Food Microbiol. 137(1):55–60. doi:10.1016/j.ijfoodmicro.2009.10.017.
  • Nusair SD, Almasaleekh MJ, Abder-Rahman H, Alkhatatbeh M. 2019. Environmental exposure of humans to bromide in the Dead Sea area: measurement of genotoxicy and apoptosis biomarkers. Mutat Res Genet Toxicol Environ Mutagen. 837:34–41. doi:10.1016/j.mrgentox.2018.09.006.
  • Oliveira RC, Carvajal-Moreno M, Correa B, Rojo-Callejas F. 2020. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus. Food Chem. 315:126096. doi:10.1016/j.foodchem.2019.126096.
  • Oufensou S, Balmas V, Azara E, Fabbri D, Dettori MA, Schüller C, Zehetbauer F, Strauss J, Delogu G, Migheli Q. 2020. Naturally occurring phenols modulate vegetative growth and deoxynivalenol biosynthesis in Fusarium graminearum. ACS Omega. 5(45):29407–29415. doi:10.1021/acsomega.0c04260.
  • Ozcakmak S, Gul O, Dervisoglu M, Yilmaz A, Sagdic O, Arici M. 2017. Comparison of the effect of some essential oils on the growth of Penicillium verrucosum and its ochratoxin a production. J Food Process Preserv. 41(1):e13006. doi:10.1111/jfpp.13006.
  • Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E. 2019. A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem. 272:494–506. doi:10.1016/j.foodchem.2018.07.205.
  • Pan C, Li Y-X, Yang K, Famous E, Ma Y, He X, Geng Q, Liu M, Tian J. 2020. The molecular mechanism of perillaldehyde inducing cell death in Aspergillus flavus by inhibiting energy metabolism revealed by transcriptome sequencing. Int J Mol Sci. 21:1518. doi:10.3390/ijms21041518.
  • Paques JP, Sagis LM, van Rijn CJ, van der Linden E. 2014. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocolloids. 40:182–188. doi:10.1016/j.foodhyd.2014.02.024.
  • Paranagama PA, Abeysekera T, Nugaliyadde L, Abeywickrama KP. 2003. Effect of the essential oils of Cymbopogon citratus, C. nardus and Cinnamomum zeylanicum on pest incidence and grain quality of rough rice (paddy) stored in an enclosed seed box. J Food Agric Environ. 1:134–136.
  • Pavoni L, Perinelli DR, Bonacucina G, Cespi M, Palmieri GF. 2020. An overview of micro-and nanoemulsions as vehicles for essential oils: formulation, preparation and stability. Nanomaterials. 10(1):135. doi:10.3390/nano10010135.
  • Perczak A, Gwiazdowska D, Gwiazdowski R, Juś K, Marchwińska K, Waśkiewicz A. 2019a. The inhibitory potential of selected essential oils on Fusarium spp. growth and mycotoxins biosynthesis in maize seeds. Pathogens. 9:23. doi:10.3390/pathogens9010023.
  • Perczak A, Gwiazdowska D, Marchwińska K, Juś K, Gwiazdowski R, Waśkiewicz A. 2019b. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch Microbiol. 201(8):1085–1097. doi:10.1007/s00203-019-01673-5.
  • Pillai P, Ramaswamy K. 2012. Effect of naturally occurring antimicrobials and chemical preservatives on the growth of Aspergillus parasiticus. J Food Sci Technol. 49(2):228–233. doi:10.1007/s13197-011-0275-6.
  • Prakash B, Kedia A, Mishra PK, Dubey N. 2015. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities–Potentials and challenges. Food Control. 47:381–391. doi:10.1016/j.foodcont.2014.07.023.
  • Prakash B, Singh P, Kedia A, Singh A, Dubey N. 2012. Efficacy of essential oil combination of Curcuma longa L. and Zingiber officinale Rosc. as a postharvest fungitoxicant, aflatoxin inhibitor and antioxidant agent. J Food Saf. 32(3):279–288. doi:10.1111/j.1745-4565.2012.00378.x.
  • Prakash B, Singh P, Yadav S, Singh S, Dubey N. 2013. Safety profile assessment and efficacy of chemically characterized Cinnamomum glaucescens essential oil against storage fungi, insect, aflatoxin secretion and as antioxidant. Food Chem Toxicol. 53:160–167. doi:10.1016/j.fct.2012.11.044.
  • Qi X, Zhong S, Schwarz P, Chen B, Rao J. 2023. Mechanisms of antifungal and mycotoxin inhibitory properties of Thymus vulgaris L. essential oil and their major chemical constituents in emulsion-based delivery system. Ind Crops Prod. 197:116575. doi:10.1016/j.indcrop.2023.116575.
  • Raeisi S, Ojagh SM, Quek SY, Pourashouri P, Salaün F. 2019. Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT. 116:108494. doi:10.1016/j.lwt.2019.108494.
  • Raveau R, Fontaine J, Soltani A, Mediouni Ben Jemâa J, Laruelle F, Lounès-Hadj Sahraoui A. 2022. In vitro potential of clary sage and coriander essential oils as crop protection and post-harvest decay control products. Foods. 11:312. doi:10.3390/foods11030312.
  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Chang P-K. 2011. Aflatoxins: mechanisms of inhibition by antagonistic plants and microorganisms. In: Guevara-Gonzalez, RG, editor. Aflatoxins: biochemistry and molecular biology. INTECH Open Access Publisher; p. 285–304.
  • Reyes-Jurado F, Bárcena-Massberg Z, Ramírez-Corona N, López-Malo A, Palou E. 2022. Fungal inactivation on Mexican corn tortillas by means of thyme essential oil in vapor-phase. Curr Res Food Sci. 5:629–633. doi:10.1016/j.crfs.2022.03.010.
  • Ribeiro LP, Domingues VC, Gonçalves GL, Fernandes JB, Glória EM, Vendramim JD. 2020. Essential oil from Duguetia lanceolata St.-Hil.(Annonaceae): Suppression of spoilers of stored-grain. Food Biosci. 36:100653. doi:10.1016/j.fbio.2020.100653.
  • Ribeiro-Santos R, Andrade M, Sanches-Silva A. 2017. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr Opin Food Sci. 14:78–84. doi:10.1016/j.cofs.2017.01.012.
  • Roshan AB, Dubey NK, Mohana DC. 2022. Chitosan nanoencapsulation of Pogostemon cablin (Blanco) Benth. essential oil and its novel preservative effect for enhanced shelf life of stored Maize kernels during storage: evaluation of its enhanced antifungal, antimycotoxin, antioxidant activities and possible mode of action. Int J of Food Sci Tech. 57(4):2195–2202. doi:10.1111/ijfs.15289.
  • Roshan AB, Venkatesh HN, Dubey NK, Mohana DC. 2022. Chitosan-based nanoencapsulation of Toddalia asiatica (L.) Lam. essential oil to enhance antifungal and aflatoxin B1 inhibitory activities for safe storage of maize. Int J Biol Macromol. 204:476–484. doi:10.1016/j.ijbiomac.2022.02.026.
  • Roshan AB, Venkatesh HN, Mohana DC. 2021. Chemical characterization of Schefflera actinophylla (Endl.) harms essential oil: antifungal and antimycotoxin activities for safe storage of food grains. Journal of Biologically Active Products from Nature. 11(1):60–69. doi:10.1080/22311866.2021.1886989.
  • Sapper M, Wilcaso P, Santamarina MP, Roselló J, Chiralt A. 2018. Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control. 92:505–515. doi:10.1016/j.foodcont.2018.05.004.
  • Schlösser I, Prange A. 2019. Effects of selected natural preservatives on the mycelial growth and ochratoxin A production of the food-related moulds Aspergillus westerdijkiae and Penicillium verrucosum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36(9):1411–1418. doi:10.1080/19440049.2019.1640397.
  • Selim K. 2021. Bioactive molecules of mandarin seed oils diminish mycotoxin and the existence of fungi. Molecules. 26(23):7130. doi:10.3390/molecules26237130.
  • Seow YX, Yeo CR, Chung HL, Yuk H-G. 2014. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr. 54(5):625–644. doi:10.1080/10408398.2011.599504.
  • Sharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, Tundis R, Sharifi-Rad M, Loizzo MR, Ademiluyi AO. 2017. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules. 22:70. doi:10.3390/molecules22010070.
  • Sharifzadeh A, Javan AJ, Shokri H, Abbaszadeh S, Keykhosravy K. 2016. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J Mycol Med. 26(1):e11–e17. doi:10.1016/j.mycmed.2015.11.002.
  • Sharma A, Sharma NK, Srivastava A, Kataria A, Dubey S, Sharma S, Kundu B. 2018. Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f. sp. lycopersici. Ind Crops Prod. 123:353–362. doi:10.1016/j.indcrop.2018.06.077.
  • Sherry M, Charcosset C, Fessi H, Greige-Gerges H. 2013. Essential oils encapsulated in liposomes: a review. J Liposome Res. 23(4):268–275. doi:10.3109/08982104.2013.819888.
  • Shukla R, Singh P, Prakash B, Dubey NK. 2013. Efficacy of A corus calamus L. essential oil as a safe plant‐based antioxidant, A flatoxin B 1 suppressor and broad spectrum antimicrobial against food‐infesting fungi. Int J Food Sci Technol. 48(1):128–135. doi:10.1111/j.1365-2621.2012.03168.x.
  • Sindhu S, Chempakam B, Leela N, Bhai RS. 2011. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production. Food Chem Toxicol. 49(5):1188–1192. doi:10.1016/j.fct.2011.02.014.
  • Tang X, Shao Y-L, Tang Y-J, Zhou W-W. 2018. Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules. 23:2108. doi:10.3390/molecules23092108.
  • Tavernier I, Wijaya W, Van der Meeren P, Dewettinck K, Patel AR. 2016. Food-grade particles for emulsion stabilization. Trends Food Sci Technol. 50:159–174. doi:10.1016/j.tifs.2016.01.023.
  • Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y. 2012. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PloS One. 7(1):e30147. doi:10.1371/journal.pone.0030147.
  • Tian J, Ban X, Zeng H, He J, Huang B, Wang Y. 2011. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int J Food Microbiol. 145(2–3):464–470. doi:10.1016/j.ijfoodmicro.2011.01.023.
  • Tian J, Huang B, Luo X, Zeng H, Ban X, He J, Wang Y. 2012. The control of Aspergillus flavus with Cinnamomum jensenianum Hand.-Mazz essential oil and its potential use as a food preservative. Food Chem. 130(3):520–527. doi:10.1016/j.foodchem.2011.07.061.
  • Vamvakas SS, Chroni M, Genneos F, Gizeli S. 2021. Vaccinium myrtillus L. dry leaf aqueous extracts suppress aflatoxins biosynthesis by Aspergillus flavus. Food Biosci. 39:100790. doi:10.1016/j.fbio.2020.100790.
  • Vitali LA, Beghelli D, Biapa Nya PC, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F, et al. 2016. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem. 9(6):775–786. doi:10.1016/j.arabjc.2015.06.002.
  • Walde P, Ichikawa S. 2001. Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng. 18(4):143–177. doi:10.1016/s1389-0344(01)00088-0.
  • Wan J, Chen B, Rao J. 2020. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf. 19(3):928–953. doi:10.1111/1541-4337.12546.
  • Wan J, Jin Z, Zhong S, Schwarz P, Chen B, Rao J. 2020. Clove oil-in-water nanoemulsion: mitigates growth of Fusarium graminearum and trichothecene mycotoxin production during the malting of Fusarium infected barley. Food Chem. 312:126120. doi:10.1016/j.foodchem.2019.126120.
  • Wan J, Zhong S, Schwarz P, Chen B, Rao J. 2018. Influence of oil phase composition on the antifungal and mycotoxin inhibitory activity of clove oil nanoemulsions. Food Funct. 9(5):2872–2882. doi:10.1039/c7fo02073b.
  • Wan J, Zhong S, Schwarz P, Chen B, Rao J. 2019. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: impact of oil compositions and processing parameters. Food Chem. 291:199–206. doi:10.1016/j.foodchem.2019.04.032.
  • Wang B, Mahoney NE, Pan Z, Khir R, Wu B, Ma H, Zhao L. 2016. Effectiveness of pulsed light treatment for degradation and detoxification of aflatoxin B1 and B2 in rough rice and rice bran. Food Control. 59:461–467. doi:10.1016/j.foodcont.2015.06.030.
  • Wang L, Jiang N, Wang D, Wang M. 2019. Effects of essential oil citral on the growth, mycotoxin biosynthesis and transcriptomic profile of Alternaria alternata. Toxins. 11:553. doi:10.3390/toxins11100553.
  • Wang L, Jin J, Liu X, Wang Y, Liu Y, Zhao Y, Xing F. 2018. Effect of cinnamaldehyde on morphological alterations of Aspergillus ochraceus and expression of key genes involved in ochratoxin A biosynthesis. Toxins. 10:340. doi:10.3390/toxins10090340.
  • Wang L, Liu B, Jin J, Ma L, Dai X, Pan L, Liu Y, Zhao Y, Xing F. 2019. The complex essential oils highly control the toxigenic fungal microbiome and major mycotoxins during storage of maize. Front Microbiol. 10:1643. doi:10.3389/fmicb.2019.01643.
  • Wang Y-F, Liu Z-Z, He Y, Zhang Y-B. 2016. Characterization and synergistic antifungal evaluation of a food grade microemulsion system against Aspergillus flavus. Adv J Food Sci Technol. 11(3):242–247. doi:10.19026/ajfst.11.2404.
  • Wu H, Zhao F, Li Q, Huang J, Ju J. 2022. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit Rev Food Sci Nutr. 1–13. doi:10.1080/10408398.2022.2124950.
  • Yakhlef G, Hambaba L, Pinto DC, Silva AM. 2020. Chemical composition and insecticidal, repellent and antifungal activities of essential oil of Mentha rotundifolia (L.) from Algeria. Ind Crops Prod. 158:112988. doi:10.1016/j.indcrop.2020.112988.
  • Yoshida P, Yokota D, Foglio M, Rodrigues RF, Pinho S. 2010. Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): characterization of aqueous dispersions and lyophilized formulations. J Microencapsul. 27(5):416–425. doi:10.3109/02652040903367327.
  • Zhan J, He F, Cai H, Wu M, Xiao Y, Xiang F, Yang Y, Ye C, Wang S, Li S. 2021. Composition and antifungal mechanism of essential oil from Chrysanthemum morifolium cv. Fubaiju. J Funct Foods. 87:104746. doi:10.1016/j.jff.2021.104746.
  • Zhang W, Li B, Lv Y, Wei S, Zhang S, Hu Y. 2023. Transcriptomic analysis shows the antifungal mechanism of honokiol against Aspergillus flavus. Int J Food Microbiol. 384:109972. doi:10.1016/j.ijfoodmicro.2022.109972.
  • Zhao F, Huang J, Qi J, Li Q, Wu H, Ju J. 2022. Proteomic analysis of antifungal mechanism of star anise essential oil against Aspergillus niger and its application potential in prolonging bread shelf life. LWT. 169:114023. doi:10.1016/j.lwt.2022.114023.
  • Zheljazkov VD, Jeliazkova EA, Astatkie T. 2021. Allelopathic effects of essential oils on seed germination of barley and wheat. Plants. 10(12):2728. doi:10.3390/plants10122728.
  • Zunino MP, Zygadlo JA. 2004. Effect of monoterpenes on lipid oxidation in maize. Planta. 219(2):303–309. doi:10.1007/s00425-004-1216-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.