47,879
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessment of poly- and perfluoroalkyl substances (PFAS) in commercially available drinking straws using targeted and suspect screening approaches

, , , , , , , & ORCID Icon show all
Pages 1230-1241 | Received 13 May 2023, Accepted 14 Jul 2023, Published online: 24 Aug 2023

References

  • Bao J, Shao LX, Liu Y, Cui SW, Wang X, Lu GL, Wang X, Jin YH. 2022. Target analysis and suspect screening of per- and polyfluoroalkyl substances in paired samples of maternal serum, umbilical cord serum and placenta near fluorochemical plants in Fuxin, China. Chemosphere. 307(Pt 1):135731. doi: 10.1016/j.chemosphere.2022.135731.
  • Barzen-Hanson KA, Field JA. 2015. Discovery and implications of C2 and C3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater. Environ Sci Technol Lett. 2(4):95–99. doi: 10.1021/acs.estlett.5b00049.
  • Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA. 2005. Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam. 22(10):1023–1031. doi: 10.1080/02652030500183474.
  • Björnsdotter MK, Yeung LWY, Kärrman A, Jogsten IE. 2019. Ultra-short-chain perfluoroalkyl acids including trifluoromethane sulfonic acid in water connected to known and suspected point sources in Sweden. Environ Sci Technol. 53(19):11093–11101. doi: 10.1021/acs.est.9b02211.
  • Borg D, Ivarsson J. 2017. Analysis of PFASs and TOF in products. Nordic Council of Ministers. Tema Nord 2017:543.
  • Boutonnet JC, Bingham P, Calamari D, de Rooij C, Franklin J, Kawano T, Libre J-M, McCul-Loch A, Malinvero G, Odom JM, et al. 1999. Environmental risk assessment of trifluoroacetic acid. Hum Ecol Risk Assess. 5(1):59–124. doi: 10.1080/10807039991289644.
  • Carlson LM, Angrish M, Shirke AV, Radke EG, Schulz B, Kraft A,JR, Patlewicz G, Blain R, Lin C, Vetter N, et al. 2022. Systematic evidence map for over one hundred and fifty per- and polyfluoroalkyl substances. Environ. Health Perspect. 130:5. doi: 10.1289/EHP10343.
  • Costello MCS, Lee S. 2020. Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances. Curr Pollution Rep. 1–21. doi: 10.1007/s40726-020-00168-y.
  • Dasu K, Liu J, Lee LS. 2012. Aerobic soil biodegradation of 8:2 fluorotelomer stearate monoester. Environ Sci Technol. 46(7):3831–3836. doi: 10.1021/es203978g.
  • De Solla SR, de Silva AO, Letcher RJ. 2012. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water down-stream of an international airport, Hamilton, Ontario, Canada. Environ Int. 39(1):19–26. doi: 10.1016/j.envint.2011.09.011.
  • D'Eon JC, Crozier PW, Furdui VI, Reiner EJ, Libelo EL, Mabury SA. 2009. Observation of a commercial fluorinated material, the polyfluoroalkyl phosphoric acid diesters, in human sera, wastewater treatment plant sludge, and paper fibers. Environ Sci Technol. 43(12):4589–4594. doi: 10.1021/es900100d.
  • Du Z, Deng S, Bei Y, Huang Q, Wang B, Huang J, Yu G. 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J Hazard Mater. 274:443–454. doi: 10.1016/j.jhazmat.2014.04.038.
  • EEA. 2022. Emerging chemical risks in Europe—‘PFAS’. European Environment Agency. [accessed 2022 October 31]. https://www.eea.europa.eu/publications/emerging-chemical-risks-in-europe.
  • Fernandes A, Lake I, Dowding A, Rose M, Jones N, Petch R, Smith F, Panton S. 2019. The potential of recycled materials used in agriculture to contaminate food through uptake by livestock. Sci Total Environ. 667:359–370. doi: 10.1016/j.scitotenv.2019.02.211.
  • Franklin G. 1993. The atmospheric degradation and impact of 1,1,1,2-tetrafluoroethane (hydrofluorocarbon 134a). Chemosphere. 27(8):1565–1601. doi: 10.1016/0045-6535(93)90251-Y.
  • Gan CD, Peng MY, Liu HB, Yang JY. 2022. Concentration and distribution of metals, total fluorine, per- and poly-fluoroalkyl substances (PFAS) in vertical soil profiles in industrialized areas. Chemosphere. 302:134855. doi: 10.1016/j.chemosphere.2022.134855.
  • Groffen T, Bervoets L, Jeong Y, Willems T, Eens M, Prinsen E. 2021. A rapid method for the detection and quantification of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 1172:122653. doi: 10.1016/j.jchromb.2021.122653.
  • Helmer RW, Reeves DM, Cassidy DP. 2022. Per- and Polyfluorinated Alkyl Substances (PFAS) cycling within Michigan: contaminated sites, landfills and wastewater treatment plants. Water Res. 210:117983. doi: 10.1016/j.watres.2021.117983.
  • Hoffman K, Webster TF, Bartell SM, Weisskopf MG, Fletcher T, Vieira VM. 2011. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility. Environ Health Perspect. 119(1):92–97. doi: 10.1289/ehp.1002503.
  • Jeong Y, da Silva KM, Iturrospe E, Fuiji Y, Boogaerts T, van Nuijs ALN, Koelmel J, Covaci A. 2022. Occurrence and contamination profile of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in Belgian wastewater using target, suspect and non-target screening approaches. J Hazard Mater. 437:129378. doi: 10.1016/j.jhazmat.2022.129378.
  • Joerss H, Menger F, Tang J, Ebinghaus R, Ahrens L. 2022. Beyond the tip of the iceberg: suspect screening reveals point source-specific patterns of emerging and novel per- and polyfluoroalkyl substances in German and Chinese rivers. Environ Sci Technol. 56(9):5456–5465. doi: 10.1021/acs.est.1c07987.
  • Koch A, Yukioka S, Tanaka S, Yeung LWY, Kärrman A, Wang T. 2021. Characterization of an AFFF impacted freshwater environment using total fluorine, extractable organofluorine and suspect per- and polyfluoroalkyl substance screening analysis. Chemosphere. 276:130179. doi: 10.1016/j.chemosphere.2021.130179.
  • Koronaiou LA, Nannou C, Xanthopoulou N, Seretoudi G, Bikiaris D, Lambropoulou DA. 2022. High-resolution mass spectrometry-based strategies for the target analysis and suspect screening of per- and polyfluoroalkyl substances in aqueous matrices. Microchem J. 179:107457. doi: 10.1016/j.microc.2022.107457.
  • Langberg HA, Arp HPP, Breedveld GD, Slinde GA, Høiseter S, Grønning H, Jartun M, Rundberget T, Jenssen BM, Hale SE. 2020. Paper product production identified as the main source of per- and polyfluoroalkyl substances (PFAS) in a Norwegian lake: source and historic emission tracking. Environ Pollut. 273:116259. doi: 10.1016/j.envpol.2020.116259.
  • Lerch M, Fengler R, Mbog G-R, Nguyen KH, Granby K. 2023. Food simulants and real food – What do we know about the migration of PFAS from paper based food contact materials? Food Packag Shelf Life. 35:100992. doi: 10.1016/j.fpsl.2022.100992.
  • Liu Y, D'Agostino LA, Qu G, Jiang G, Martin JW. 2019. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends Analyt Chem. 121:115420. doi: 10.1016/j.trac.2019.02.021.
  • Masoner JR, Kolpin DW, Cozzarelli IM, Smalling KL, Bolyard SC, Field JA, Furlong ET, Gray JL, Lozinski D, Reinhart D, et al. 2020. Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater. Environ Sci Water Res Technol. 6(5):1300–1311. doi: 10.1039/D0EW00045K.
  • Miaz LT, Plassmann MM, Gyllenhammar I, Bignert A, Sandblom O, Lignell S, Glynn A, Benskin JP. 2020. Temporal trends of suspect- and target-per/polyfluoroalkyl substances (PFAS), extractable organic fluorine (EOF) and total fluorine (TF) in pooled serum from first-time mothers in Uppsala, Sweden, 1996–2017. Environ Sci Process Impacts. 22(4):1071–1083. doi: 10.1039/c9em00502a.
  • Monge Brenes AL, Curtzwiler G, Dixon P, Harrata K, Talbert J, Vorst K. 2019. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018. Food Addit Contam Part B Surveill. 12(3):191–198. doi: 10.1080/19393210.2019.1592238.
  • Neuwald IJ, Hübner D, Wiegand HL, Valkov V, Borchers U, Nödler K, Scheurer M, Hale SE, Arp HPH, Zahn D. 2022. Ultra-short-chain PFASs in the sources of German drinking water: prevalent, overlooked, difficult to remove, and unregulated. Environ Sci Technol. 56(10):6380–6390. doi: 10.1021/acs.est.1c07949.
  • Ng K, Alygizakis N, Androulakakis A, Galani A, Aalizadeh R, Thomaidis NS, Slobodnik J. 2022. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River basin. J Hazard Mater. 436:129276. doi: 10.1016/j.jhazmat.2022.129276.
  • Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-CAsero N, Oberacher H, Lamoree M, Damont A, Fenaille F, et al. 2020. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonization issues. Environ Int. 139:105545. doi: 10.1016/j.envint.2020.105545.
  • Powley CR, George SW, Ryan TW, Buck RC. 2005. Matrix effect-free analytical methods for determination of perfluorinated carboxylic acids in environmental matrixes. Anal Chem. 77(19):6353–6358. doi: 10.1021/ac0508090.
  • Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, Lunderberg DM, Lang JR, Peaslee GF. 2017. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett. 4(3):105–111. doi: 10.1021/acs.estlett.6b00435.
  • Schymanski E, Jeon J, Gulde R, Fenner K, Ruff MP, Singer H, Hollender J. 2014. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 48(4):2097–2098. doi: 10.1021/es5002105.
  • Solomon KR, Velders GJM, Wilson SR, Madronich S, Longstreth J, Aucamp PJ, Bornman JF. 2016. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: relevance to substances regulated under the Montreal and Kyoto protocols. J Toxicol Environ Health B Crit Rev. 19(7):289–304. doi: 10.1080/10937404.2016.1175981.
  • Stoiber T, Evans S, Naidenko OV. 2020. Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. Chemosphere. 260:127659. doi: 10.1016/j.chemosphere.2020.127659.
  • Sun M, Cui J, Guo J, Zhai Z, Zuo P, Zhang J. 2020. Fluorochemicals biodegradation as a potential source of trifluoroacetic acid (TFA) to the environment. Chemosphere. 254:126894. doi: 10.1016/j.chemosphere.2020.126894.
  • Sznajder-Katarzyńska K, Surma M, Cieślik I. 2019. A Review of perfluoroalkyl acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination. J Chem. 2019:1–20. doi: 10.1155/2019/2717528.
  • Timshina A, Aristizabal-Henao JJ, Da Silva BF, Bowden JA. 2021. The last straw: characterization of per- and polyfluoroalkyl substances in commercially-available plant-based drinking straws. Chemosphere. 277:130238. doi: 10.1016/j.chemosphere.2021.130238.
  • Trier X, Granby K, Christensen JH. 2011. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ Sci Pollut Res Int. 18(7):1108–1120. doi: 10.1007/s11356-010-0439-3.
  • Trier X, Taxvig C, Rosenmai A, Pederson G. 2017. PFAS in paper and board for food contact: options for risk management of poly- and perfluorinated substances. Nordic Council of Ministers. TemaNORD 2017:573.
  • U.S. Environmental Protection Agency (US EPA). 2023. Comptox chemicals dashboard: master list of PFAS substances (version2.2.1). [accessed 2023 May 13] https://comptox.epa.gov/dashboard/chemical_lists/pfasmaster.
  • Villanueva P. 2005. MLE-based procedure for left-censored data excel spreadsheet. Washington (DC): Office of Pesticide Programs, U.S. Environmental Protection Agency.
  • Wang X, Yu N, Qian Y, Shi W, Zhang X, Geng J, Yu H, Wei S. 2020. Non-target and suspect screening of per- and polyfluoroalkyl substances in Chinese municipal wastewater treatment plants. Water Res. 183:115989. doi: 10.1016/j.watres.2020.115989.
  • Zhang W, Zhang Y, Taniyasu S, Yeung LWY, Lam PKS, Wang J, Li X, Yamashita N, Dai J. 2013. Distribution and fate of perfluoroalkyl substances in municipal wastewater treatment plants in economically developed areas of China. Environ Pollut. 176:10–17. doi: 10.1016/j.envpol.2012.12.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.