242
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quantitative PCR (qPCR) for estimating the presence of Fusarium and its mycotoxins in barley grains

, , , , , & ORCID Icon show all
Pages 1369-1387 | Received 23 Jun 2023, Accepted 15 Aug 2023, Published online: 28 Aug 2023

References

  • Agriopoulou S, Stamatelopoulou E, Varzakas T. 2020. Advances in analysis and detection of major mycotoxins in foods. Foods. 9(4):518. doi: 10.3390/foods9040518.
  • Alisaac E, Behmann J, Rathgeb A, Karlovsky P, Dehne H-W, Mahlein A-K. 2019. Assessment of Fusarium infection and mycotoxin contamination of wheat kernels and flour using hyperspectral imaging. Toxins. 11(10):556. doi: 10.3390/toxins11100556.
  • Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. JAOAC Int. 86(2):412–431. doi: 10.1093/jaoac/86.2.412.
  • Anfossi L, Giovannoli C, Baggiani C. 2016. Mycotoxin detection. Curr Opin Biotechnol. 37:120–126. doi: 10.1016/j.copbio.2015.11.005.
  • [ANVISA] Agência Nacional de Vigilância Sanitária. 2022. Instrução Normativa n° 160 [Normative Instruction n° 160]. Dispõe sobre os limites máximos tolerados (LMT) de contaminantes em alimentos [Displays the maximum tolerated limits of food contaminants]. http://antigo.anvisa.gov.br/documents/10181/2718376/IN_160_2022_.pdf.
  • Aoki T, Ward TJ, Kistler HC, O'Donnell K. 2012. Systematics, phylogeny and trichothecene mycotoxin potential of fusarium head blight cereal pathogens. Mycotoxins. 62(2):91–102. doi: 10.2520/myco.62.91.
  • Arruda MHM, Zchosnki FL, Silva YK, de Lima DL, Tessmann DJ, Da-Silva PR. 2021. Genetic diversity of Fusarium meridionale, F. austroamericanum, and F. graminearum isolates associated with Fusarium head blight of wheat in Brazil. Trop Plant Pathol. 46(1):98–108. doi: 10.1007/s40858-020-00403-3.
  • Astolfi P, dos Santos J, Schneider L, Gomes LB, Silva CN, Tessmann DJ, Del Ponte EM. 2011. Molecular survey of trichothecene genotypes of Fusarium graminearum species complex from barley in Southern Brazil. Int J Food Microbiol. 148(1):197–201. doi: 10.1016/j.ijfoodmicro.2011.05.019.
  • Atoui A, El Khoury A, Kallassy M, Lebrihi A. 2012. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Int J Food Microbiol. 154(1–2):59–65. doi: 10.1016/j.ijfoodmicro.2011.12.022.
  • Badea A, Wijekoon C. 2021. Benefits of barley grain in animal and human Diets. In: goyal AK, editor. Cereal Grains. Vol. 1. 1st ed. London: IntechOpen; p. 100–125. doi: 10.5772/intechopen.97053.
  • Beccari G, Prodi A, Tini F, Bonciarelli U, Onofri A, Oueslati S, Limayma M, Covarelli L. 2017. Changes in the Fusarium head blight complex of malting barley in a three-year field experiment in italy. Toxins. 9(4):120–138. doi: 10.3390/toxins9040120.
  • Bertero A, Fossati P, Tedesco DEA, Caloni F. 2020. Beauvericin and enniatins: in vitro intestinal effects. Toxins. 12(11):686. doi: 10.3390/toxins12110686.
  • Birr T, Hasler M, Verreet J-A, Klink H. 2020. Composition and predominance of Fusarium species causing fusarium head blight in winter wheat grain depending on cultivar susceptibility and meteorological factors. Microorganisms. 8(4):617. doi: 10.3390/microorganisms8040617.
  • Blake T, Blake VC, Bowman JGP, Abdel‐Haleem H. 2010. Barley Feed Uses and Quality Improvement. In: Ullrich SE, editor. Barley: production, Improvement, and Uses. Vol. 1. 1st ed. West Sussex: Wiley-Blackwell; p. 522–531. doi: 10.1002/9780470958636.ch16.
  • Bolechová M, Benešová K, Běláková S, Čáslavský J, Pospíchalová M, Mikulíková R. 2015. Determination of seventeen mycotoxins in barley and malt in the Czech Republic. Food Control. 47(1):108–113. doi: 10.1016/j.foodcont.2014.06.045.
  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. 2009. The MIQE guidelines: minimum Information for publication of quantitative real-time PCR experiments. Clin Chem. 55(4):611–622. doi: 10.1373/clinchem.2008.112797.
  • Cai YT, McLaughlin M, Zhang K. 2020. Advancing the FDA/Office of regulatory affairs mycotoxin program: new analytical method approaches to addressing needs and challenges. J AOAC Int. 103(3):705–709. doi: 10.1093/jaocint/qsz007.
  • Caramês ETDS, Piacentini KC, Alves LT, Pallone JAL, Rocha LDO. 2020. NIR spectroscopy and chemometric tools to identify high content of deoxynivalenol in barley. Food Addit Contam Part A. 37(9):1542–1552. doi: 10.1080/19440049.2020.1778189.
  • Caramês E. d S, Piacentini KC, Aparecida Almeida N, Lopes Pereira V, Azevedo Lima Pallone J, de Oliveira Rocha L. 2022. Rapid assessment of enniatins in barley grains using near infrared spectroscopy and chemometric tools. Food Res Int. 161:111759. doi: 10.1016/j.foodres.2022.111759.
  • Cimbalo A, Alonso-Garrido M, Font G, Frangiamone M, Manyes L. 2021. Article transcriptional changes after enniatins A, A1, B and B1 ingestion in rat stomach, liver, kidney and lower intestine. Foods. 10(7):1630. doi: 10.3390/foods10071630.
  • [CONTAM] EFSA Panel on Contaminants in the Food Chain. 2013. Scientific opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA J. 11(6):3262. doi: 10.2903/j.efsa.2013.3262.
  • [CONTAM] EFSA Panel on Contaminants in the Food Chain. 2014. Scientific opinion on the risks to human and animal health related to the presence of beauvericin and enniatins in food and feed. EFSA J. 12(8):3802. doi: 10.2903/j.efsa.2014.3802.
  • Daou R, Joubrane K, Maroun RG, Khabbaz LR, Ismail A, Khoury AE. 2021. Mycotoxins: factors influencing production and control strategies. AIMS Agric Food. 6(1):416–447. doi: 10.3934/agrfood.2021025.
  • Darwish AMG. 2019. Fungal mycotoxins and natural antioxidants: two sides of the same coin and significance in food safety. Microbial Biosyst. 4(1):1–16. doi: 10.21608/mb.2019.37468.
  • Del Ponte EM, Spolti P, Ward TJ, Gomes LB, Nicolli CP, Kuhnem PR, Silva CN, Tessmann DJ. 2015. Regional and field-specific factors affect the composition of Fusarium head blight pathogens in subtropical no-till wheat agroecosystem of Brazil. Phytopathology. 105(2):246–254. doi: 10.1094/PHYTO-04-14-0102-R.
  • Ducos C, Pinson-Gadais L, Chereau S, Richard-Forget F, Vásquez-Ocmín P, Cerapio JP, Casavilca-Zambrano S, Ruiz E, Pineau P, Bertani S, et al. 2021. Natural occurrence of mycotoxin-producing fusaria in market-bought peruvian cereals: a food safety threat for andean populations. Toxins. 13(2):172. doi: 10.3390/toxins13020172.
  • [EC] European Commission. 2023. Regulation (EC) No 2023/915. Commission regulation on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. https://eur-lex.europa.eu/eli/reg/2023/915/oj.
  • [FAO] Food and Agriculture Organization of the United Nations. 2022. Agricultural production statistics 2000–2021. Food Agric Stat. 60(1):1–17. https://www.fao.org/3/cc3751en/cc3751en.pdf.
  • [FAO] Food and Agriculture Organization of the United Nations. 2003. Worldwide regulations for mycotoxins in food and feed 2003. FAO Food and Nutr. 81(1):1–171. https://www.fao.org/3/y5499e/y5499e02.htm.
  • Fernando WGD, Oghenekaro AO, Tucker JR, Badea A. 2021. Building on a foundation: advances in epidemiology, resistance breeding, and forecasting research for reducing the impact of fusarium head blight in wheat and barley. Can J Plant Pathol. 43(4):495–526. doi: 10.1080/07060661.2020.1861102.
  • Fredlund E, Gidlund A, Olsen M, Börjesson T, Spliid NHH, Simonsson M. 2008. Method evaluation of Fusarium DNA extraction from mycelia and wheat for down-stream real-time PCR quantification and correlation to mycotoxin levels. J Microbiol Methods. 73(1):33–40. doi: 10.1016/j.mimet.2008.01.007.
  • Garmendia G, Pattarino L, Negrín C, Martínez-Silveira A, Pereyra S, Ward TJ, Vero S. 2018. Species composition, toxigenic potential and aggressiveness of Fusarium isolates causing head blight of barley in Uruguay. Food Microbiol. 76(1):426–433. doi: 10.1016/j.fm.2018.07.005.
  • Gautier C, Pinson-Gadais L, Richard-Forget F. 2020. Fusarium mycotoxins enniatins: an updated review of their occurrence, the producing Fusarium species, and the abiotic determinants of their accumulation in crop harvests. J Agric Food Chem. 68(17):4788–4798. doi: 10.1021/acs.jafc.0c00411.
  • Gavrilova OP, Orina AS, Gogina NN, Gagkaeva TYu. 2021. Co-occurrence of the metabolites of Alternaria and Fusarium fungi associated with small-grain cereals. Russ Agric Sci. 47(1):37–41. doi: 10.3103/S1068367421010079.
  • González-Jartín JM, Rodríguez-Cañás I, Alfonso A, Sainz MJ, Vieytes MR, Gomes A, Ramos I, Botana LM. 2021. Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: quEChERS extraction followed by UHPLC–MS/MS analysis. Food Chem. 356(1):129647. doi: 10.1016/j.foodchem.2021.129647.
  • Góral T, Przetakiewicz J, Ochodzki P, Wiewióra B, Wiśniewska H. 2022. Quantification of DNA of Fusarium culmorum and trichothecene genotypes 3ADON and NIV in the grain of winter wheat. Pathogens. 11(12):1449. doi: 10.3390/pathogens11121449.
  • Hussien T, Carlobos-Lopez AL, Cumagun CJR, Yli-Mattila T. 2017. Identification and quantification of fumonisin-producing Fusarium species in grain and soil samples from Egypt and the Philippines. Phytopathol Mediterr. 56(1):146–153. doi: 10.14601/Phytopathol_Mediterr-20294.
  • Islam MN, Tabassum M, Banik M, Daayf F, Fernando WGD, Harris LJ, Sura S, Wang X. 2021. Naturally occurring Fusarium species and mycotoxins in oat grains from Manitoba, Canada. Toxins. 13(9):670. doi: 10.3390/toxins13090670.
  • Iwase CHT, Piacentini KC, Giomo PP, Čumová M, Wawroszová S, Běláková S, Minella E, Rocha LO. 2020. Characterization of the Fusarium sambucinum species complex and detection of multiple mycotoxins in Brazilian barley samples. Food Res Int. 136:109336. doi: 10.1016/j.foodres.2020.109336.
  • Janssen EM, Liu C, Van Der Fels-Klerx HJ. 2018. Fusarium infection and trichothecenes in barley and its comparison with wheat. World Mycotoxin J. 11(1):33–46. doi: 10.3920/WMJ2017.2255.
  • Juan-García A, Juan C, Tolosa J, Ruiz M-J. 2019. Effects of deoxynivalenol, 3-acetyl-deoxynivalenol and 15-acetyl-deoxynivalenol on parameters associated with oxidative stress in HepG2 cells. Mycotoxin Res. 35(2):197–205. doi: 10.1007/s12550-019-00344-0.
  • Karlsson I, Persson P, Friberg H. 2021. Fusarium head blight from a microbiome perspective. Front Microbiol. 12(1):628373. doi: 10.3389/fmicb.2021.628373.
  • Kitchen RR, Kubista M, Tichopad A. 2010. Statistical aspects of quantitative real-time PCR experiment design. Methods. 50(4):231–236. doi: 10.1016/j.ymeth.2010.01.025.
  • Kulik T, Jestoi M, Okorski A. 2011. Development of TaqMan assays for the quantitative detection of Fusarium avenaceum/Fusarium tricinctum and Fusarium poae esyn1 genotypes from cereal grain. FEMS Microbiol Lett. 314(1):49–56. doi: 10.1111/j.1574-6968.2010.02145.x.
  • Kulik T, Treder K, Załuski D. 2015. Quantification of Alternaria, Cladosporium, Fusarium and Penicillium verrucosum in conventional and organic grains by qPCR. J Phytopathol. 163(7–8):522–528. doi: 10.1111/jph.12348.
  • Langridge P. 2018. Economic and academic importance of barley. In: Stein N, Muehlbauer GJ, editors. The Barley Genome. Vol. 1. 1st ed. Basel: Springer International Publishing; p. 1–10. doi: 10.1007/978-3-319-92528-8_1.
  • Lattanzio VMT, von Holst C, Lippolis V, De Girolamo A, Logrieco AF, Mol HGJ, Pascale M. 2019. Evaluation of mycotoxin screening tests in a verification study involving first time users. Toxins. 11(2):129. doi: 10.3390/toxins11020129.
  • Leslie JF, Summerell BA, editors. 2006. The fusarium laboratory manual. 1st ed. Ames: Blackwell Publishing. doi: 10.1002/9780470278376.
  • Mallmann CA, Dilkin P, Mallmann AO, Oliveira MS, Adaniya ZNC, Tonini C. 2017. Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: an eight-year (2008 to 2015) summary. Trop Plant Pathol. 42(3):146–152. doi: 10.1007/s40858-017-0152-6.
  • Meng K, Wang Y, Yang P, Luo H, Bai Y, Shi P, Yuan T, Ma R, Yao B. 2010. Rapid detection and quantification of zearalenone-producing Fusarium species by targeting the zearalenone synthase gene PKS4. Food Control. 21(2):207–211. doi: 10.1016/j.foodcont.2009.05.014.
  • Munkvold GP, Proctor RH, Moretti A. 2021. Mycotoxin production in Fusarium according to contemporary species concepts. Annu Rev Phytopathol. 59(1):373–402. doi: 10.1146/annurev-phyto-020620-102825.
  • Nagashima H. 2018. Deoxynivalenol and nivalenol toxicities in cultured cells: a review of comparative studies. Food Saf. 6(2):51–57. doi: 10.14252/foodsafetyfscj.2017026.
  • Nicolaisen M, Supronienė S, Nielsen LK, Lazzaro I, Spliid NH, Justesen AF. 2009. Real-time PCR for quantification of eleven individual Fusarium species in cereals. J Microbiol Methods. 76(3):234–240. doi: 10.1016/j.mimet.2008.10.016.
  • Nielsen LK, Jensen JD, Rodríguez A, Jørgensen LN, Justesen AF. 2012. TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol. 157(3):384–392. doi: 10.1016/j.ijfoodmicro.2012.06.010.
  • Nogueira M, Decundo J, Martinez M, Dieguez S, Moreyra F, Moreno M, Stenglein S. 2018. Natural contamination with mycotoxins produced by Fusarium graminearum and Fusarium poae in malting barley in Argentina. Toxins. 10(2):78. doi: 10.3390/toxins10020078.
  • Nolan P, Auer S, Spehar A, Elliott CT, Campbell K. 2019. Current trends in rapid tests for mycotoxins. Food Addit Contam Part A. 36(5):800–814. doi: 10.1080/19440049.2019.1595171.
  • O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA, Benjamin L, Lindsley M, Padhye A, et al. 2007. Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol. 45(7):2235–2248. doi: 10.1128/JCM.00533-07.
  • O’Donnell K, Sutton DA, Rinaldi MG, Sarver BAJ, Balajee SA, Schroers H-J, Summerbell RC, Robert VARG, Crous PW, Zhang N, et al. 2010. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol. 48(10):3708–3718. doi: 10.1128/JCM.00989-10.
  • Orlando B, Grignon G, Vitry C, Kashefifard K, Valade R. 2019. Fusarium species and enniatin mycotoxins in wheat, durum wheat, triticale and barley harvested in France. Mycotoxin Res. 35(4):369–380. doi: 10.1007/s12550-019-00363-x.
  • Osborne LE, Stein JM. 2007. Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol. 119(1–2):103–108. doi: 10.1016/j.ijfoodmicro.2007.07.032.
  • Pereira VL, Fernandes JO, Cunha SC. 2014. Mycotoxins in cereals and related foodstuffs: a review on occurrence and recent methods of analysis. Trends Food Sci Technol. 36(2):96–136. doi: 10.1016/j.tifs.2014.01.005.
  • Piacentini KC, Rocha LO, Savi GD, Carnielli-Queiroz L, Almeida FG, Minella E, Corrêa B. 2018. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil. Mycotoxin Res. 34(3):173–178. doi: 10.1007/s12550-018-0311-8.
  • Pinheiro M, Iwase CHT, Bertozzi BG, Caramês ETS, Carnielli-Queiroz L, Langaro NC, Furlong EB, Correa B, Rocha LO. 2021. Survey of freshly harvested oat grains from southern brazil reveals high incidence of type B Trichothecenes and associated fusarium species. Toxins. 13(12):855. doi: 10.3390/toxins13120855.
  • Pitt JI, Hocking AD. 2009. Fungi and food spoilage. 3rd ed. Boston (MA): Springer US. doi: 10.1007/978-0-387-92207-2.
  • Pizzutti IR, Dias JV, Kok A, Cardoso CD, Vela GME. 2016. Pesticide residues method validation by UPLC-MS/MS for accreditation purposes. J Braz Chem Soc. 27(7):1–12. doi: 10.5935/0103-5053.20160012.
  • Preiser V, Goetsch D, Sulyok M, Krska R, Mach RL, Farnleitner A, Brunner K. 2015. The development of a multiplex real-time PCR to quantify Fusarium DNA of trichothecene and fumonisin producing strains in maize. Anal Methods. 7(4):1358–1365. doi: 10.1039/C4AY02581D.
  • Proctor RH, McCormick SP, Gutiérrez S. 2020. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl Microbiol Biotechnol. 104(12):5185–5199. doi: 10.1007/s00253-020-10612-0.
  • Rai A, Das M, Tripathi A. 2020. Occurrence and toxicity of a Fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr. 60(16):2710–2729. doi: 10.1080/10408398.2019.1655388.
  • Rodríguez A, Isabel Luque M, Andrade MJ, Rodríguez M, Asensio MA, Córdoba JJ. 2011a. Development of real-time PCR methods to quantify patulin-producing molds in food products. Food Microbiol. 28(6):1190–1199. doi: 10.1016/j.fm.2011.04.004.
  • Rodríguez A, Rodríguez M, Andrade MJ, Córdoba JJ. 2012a. Development of a multiplex real-time PCR to quantify aflatoxin, ochratoxin A and patulin producing molds in foods. Int J Food Microbiol. 155(1–2):10–18. doi: 10.1016/j.ijfoodmicro.2012.01.007.
  • Rodríguez A, Rodríguez M, Andrade MJ, Córdoba JJ. 2015. Detection of filamentous fungi in foods. Curr Opin Food Sci. 5(1):36–42. doi: 10.1016/j.cofs.2015.07.007.
  • Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ. 2011b. Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods. Int J Food Microbiol. 149(3):226–235. doi: 10.1016/j.ijfoodmicro.2011.06.019.
  • Rodríguez A, Rodríguez M, Luque MI, Martín A, Córdoba JJ. 2012b. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods. Food Microbiol. 31(1):89–99. doi: 10.1016/j.fm.2012.02.009.
  • Ropejko K, Twarużek M. 2021. Zearalenone and its metabolites-general overview, occurrence, and toxicity. Toxins. 13(1):35. doi: 10.3390/toxins13010035.
  • [SANTE] Directorate-General for Health and Food Safety (EU). 2020. SANTE/2020/12830. Guidance document on pesticide analytical methods for risk assessment and post-approval control and monitoring purposes. https://food.ec.europa.eu/system/files/2021-03/pesticides_ppp_app-proc_guide_res_mrl-guidelines-2020-12830.pdf.
  • [SANTE] Directorate-General for Health and Food Safety (EU). 2021. SANTE/11312/2021. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. https://food.ec.europa.eu/system/files/2022- 02/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf.
  • Sarlin T, Yli-Mattila T, Jestoi M, Rizzo A, Paavanen-Huhtala S, Haikara A. 2006. Real-time PCR for quantification of toxigenic Fusarium species in barley and malt. Eur J Plant Pathol. 114(4):371–380. doi: 10.1007/s10658-006-0001-9.
  • Schiro G, Müller T, Verch G, Sommerfeld T, Mauch T, Koch M, Grimm V, Müller MEH. 2019. The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance. J Appl Microbiol. 126(1):177–190. doi: 10.1111/jam.14104.
  • Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Seifert K, Gräfenhan T, Keller B, et al. 2018. Occurrence of Fusarium species and mycotoxins in swiss oats—impact of cropping factors. Europ J Agron. 92(1):123–132. doi: 10.1016/j.eja.2017.09.004.
  • Scoz LB, Astolfi P, Reartes DS, Schmale DG, Moraes MG, Del Ponte EM. 2009. Trichothecene mycotoxin genotypes of Fusarium graminearum sensu stricto and Fusarium meridionale in wheat from southern Brazil. Plant Pathol. 58(2):344–351. doi: 10.1111/j.1365-3059.2008.01949.x.
  • Senatore MT, Prodi A, Tini F, Balmas V, Infantino A, Onofri A, Cappelletti E, Oufensou S, Sulyok M, Covarelli L, et al. 2023. Different diagnostic approaches for the characterization of the fungal community and Fusarium species complex composition of Italian durum wheat grain and correlation with secondary metabolites accumulation. J Sci Food Agric. 103 (9):4503–4521. doi: 10.1002/jsfa.12526.
  • Singh J, Mehta A. 2020. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci Nutr. 8(5):2183–2204. doi: 10.1002/fsn3.1474.
  • Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol and its toxicity. Interdiscip Toxicol. 3(3):94–99. doi: 10.2478/v10102-010-0019-x.
  • Stępień Ł, Waśkiewicz A. 2013. Sequence divergence of the enniatin synthase gene in relation to production of beauvericin and enniatins in Fusarium species. Toxins. 5(3):537–555. doi: 10.3390/toxins5030537.
  • Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. 2015. How good is a PCR efficiency estimate: recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 3(1):9–16. doi: 10.1016/j.bdq.2015.01.005.
  • Tannous J, Atoui A, El Khoury A, Kantar S, Chdid N, Oswald IP, Puel O, Lteif R. 2015. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiol. 50(1):28–37. doi: 10.1016/j.fm.2015.03.001.
  • Tralamazza SM, Braghini R, Corrêa B. 2016. Trichothecene genotypes of the Fusarium graminearum species complex isolated from brazilian wheat grains by conventional and quantitative PCR. Front Microbiol. 7(1):246. doi: 10.3389/fmicb.2016.00246.
  • Tyska D, Mallmann AO, Vidal JK, Almeida C. d, Gressler LT, Mallmann CA. 2021. Multivariate method for prediction of fumonisins B1 and B2 and zearalenone in Brazilian maize using Near Infrared Spectroscopy (NIR). PLoS One. 16(1):e0244957. doi: 10.1371/journal.pone.0244957.
  • [USDA] United States Department of Agriculture. 2023. Barley explorer. [Accessed 2023 June 23]. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=04 30000.
  • Valverde-Bogantes E, Bianchini A, Herr JR, Rose DJ, Wegulo SN, Hallen-Adams HE. 2020. Recent population changes of Fusarium head blight pathogens: drivers and implications. Can J Plant Pathol. 42(3):315–329. doi: 10.1080/07060661.2019.1680442.
  • van Rensburg BJ, McLaren NW, Flett BC, Schoeman A. 2015. Fumonisin producing Fusarium spp. and fumonisin contamination in commercial South African maize. Eur J Plant Pathol. 141(3):491–504. doi: 10.1007/s10658-014-0558-7.
  • Vogelgsang S, Beyer M, Pasquali M, Jenny E, Musa T, Bucheli TD, Wettstein FE, Forrer H-R. 2019. An eight-year survey of wheat shows distinctive effects of cropping factors on different Fusarium species and associated mycotoxins. Eur J Agron. 105(1):62–77. doi: 10.1016/j.eja.2019.01.002.
  • Wang SS, Cui H, Chen MZ, Li L, Wu Y, Wang SX. 2021. Simultaneous quantitation of 3ADON and 15ADON chemotypes of DON-producing fusarium species in chinese wheat based on duplex droplet digital PCR assay. J Microbiol Methods. 190(1):106319. doi: 10.1016/j.mimet.2021.106319.
  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O'Donnell K. 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A. 99(14):9278–9283. doi: 10.1073/pnas.142307199.
  • Xue AG, Chen Y, Seifert K, Guo W, Blackwell BA, Harris LJ, Overy DP. 2019. Prevalence of Fusarium species causing head blight of spring wheat, barley and oat in Ontario during 2001–2017. Can J Plant Pathol. 41(3):392–402. doi: 10.1080/07060661.2019.1582560.
  • Yang Y, Li G, Wu D, Liu J, Li X, Luo P, Hu N, Wang H, Wu Y. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends Food Sci Technol. 96(1):233–252. doi: 10.1016/j.tifs.2019.12.021.
  • Yang Y, Yu S, Tan Y, Liu N, Wu A. 2017. Individual and combined cytotoxic effects of co-occurring deoxynivalenol family mycotoxins on human gastric epithelial cells. Toxins. 9(3):96. doi: 10.3390/toxins9030096.
  • Yli-Mattila T, Hussien T, Abbas A. 2022. Comparison of biomass and deoxynivalenol production of northern European and southern European Fusarium graminearum isolates in the infection of wheat and oat grains. J Plant Pathol. 104(4):1465–1474. doi: 10.1007/s42161-022-01233-9.
  • Zachariasova M, Lacina O, Malachova A, Kostelanska M, Poustka J, Godula M, Hajslova J. 2010. Novel approaches in analysis of mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Anal Chim Acta. 662(1):51–61. doi: 10.1016/j.aca.2009.12.034.
  • Zhou W, Yang S, Wang PG. 2017. Matrix effects and application of matrix effect factor. Bioanalysis. 9(23):1839–1844. doi: 10.4155/bio-2017-0214.
  • Zingales V, Fernández-Franzón M, Ruiz MJ. 2021. Occurrence, mitigation and in vitro cytotoxicity of nivalenol, a type B trichothecene mycotoxin – updates from the last decade (2010–2020). Food Chem Toxicol. 152(1):112182. doi: 10.1016/j.fct.2021.112182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.