84
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization of [P6,6,6,14+]3[GdCl63−] magnetic ionic liquid assisted dispersive liquid-liquid microextraction for selective and sensitive determination of cadmium in environmental water and food

& ORCID Icon
Pages 1600-1613 | Received 24 Jul 2023, Accepted 19 Oct 2023, Published online: 01 Nov 2023

References

  • Abdelaziz MA, Mansour FR, Danielson ND. 2021. A gadolinium-based magnetic ionic liquid for dispersive liquid–liquid microextraction. Anal Bioanal Chem. 413(1):205–214. doi: 10.1007/s00216-020-02992-z.
  • Aguirre MÁ, Canals A. 2022. Magnetic deep eutectic solvents in microextraction techniques. Trac Trends Anal Chem. 146:116500. doi: 10.1016/j.trac.2021.116500.
  • Altunay N, Elik A, Bingöl D. 2020. Simple and green heat-induced deep eutectic solvent microextraction for determination of lead and cadmium in vegetable samples by flame atomic absorption spectrometry: a multivariate study. Biol Trace Elem Res. 198(1):324–331. doi: 10.1007/s12011-020-02064-4.
  • Altunay N, Elik A. 2021. Ultrasound-assisted alkanol-based nanostructured supramolecular solvent for extraction and determination of cadmium in food and environmental samples: experimental design methodology. Microchem J. 164:105958. doi: 10.1016/j.microc.2021.105958.
  • Alves MS, Neto LCF, Scheid C, Merib J. 2022. An overview of magnetic ionic liquids: from synthetic strategies to applications in microextraction techniques. J Sep Sci. 45(1):258–281. doi: 10.1002/jssc.202100599.
  • Anzum R, Alawamleh HSK, Bokov DO, Jalıl AT, Hoı HT, Abdelbasset WK, Thoı NT, Wıdjaja G, Kurochkın A. 2022. A review on separation and detection of copper, cadmium, and chromium in food based on cloud point extraction technology. Food Sci Technol. 42:42. doi: 10.1590/fst.80721.
  • Behbahani M, Hassanlou PG, Amini MM, Omidi F, Esrafili A, Farzadkia M, Bagheri A. 2015. Application of solvent-assisted dispersive solid phase extraction as a new, fast, simple and reliable preconcentration and trace detection of lead and cadmium ions in fruit and water samples. Food Chem. 187:82–88. doi: 10.1016/j.foodchem.2015.04.061.
  • Çıtak D, Sabancı D. 2021. Response surface methodology and hydrophobic deep eutectic solvent based liquid phase microextraction combination for determination of cadmium in food and water samples. Food Measure. 15(2):1843–1850. doi: 10.1007/s11694-020-00761-1.
  • Council Directive. 1998. On the quality of water intended for human consumption. Off J Eur Commun. 330:32–54.
  • EC–European Commission. 2014. Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Offic J Eur Union L. 138:75.
  • EFSA Panel on Contaminants in the Food Chain (CONTAM). 2011. Statement on tolerable weekly intake for cadmium. EFSA J. 9(2):1975.
  • Elik A, Demirbaş A, Altunay N. 2022. Experimental design of ligandless sonication-assisted liquid-phases microextraction based on hydrophobic deep eutectic solvents for accurate determination of Pb (II) and Cd (II) from waters and food samples at trace levels. Food Chem. 371:131138. doi: 10.1016/j.foodchem.2021.131138.
  • Feng X, Xu X, Liu Z, Xue S, Zhang L. 2020. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: a rapid approach for determination of estrogens in milk and cosmetics. Talanta. 209:120542. doi: 10.1016/j.talanta.2019.120542.
  • Ferreira VJ, de Jesus MS, Dos Santos MC, Guedes WN, Lemos VA, Novaes CG, Costa FS, Pacheco CSV, da Silva EGP, Amorim FAC. 2021. Multivariate optimization of ultrasound-assisted liquid–liquid microextraction based on two solvents for cadmium preconcentration prior to determination by flame atomic absorption spectrometry. Anal Methods. 13(2):267–273. doi: 10.1039/d0ay02030c.
  • He W, Hu X, Sun L, Wang B, Xing H, Li K, Zhang H. 2023. Tetrasodium iminodisuccinate as a biodegradable complexing agent for remediating metal‐contaminated soil. Can J Chem Eng. 101(4):1842–1853. doi: 10.1002/cjce.24620.
  • Hou J, Fan Y, Ma X, Dong X, Yao S. 2021. Effects of modified fly ash doped carbon paste electrodes and metal film electrodes on the determination of trace cadmium (ii) by anodic stripping voltammetry. RSC Adv. 11(28):17240–17248. doi: 10.1039/d0ra07493d.
  • Ji Y, Zhao M, Li A, Zhao L. 2021. Hydrophobic deep eutectic solvent-based ultrasonic-assisted dispersive liquid-liquid microextraction for preconcentration and determination of trace cadmium and arsenic in wine samples. Microchem J. 164:105974. doi: 10.1016/j.microc.2021.105974.
  • Kasa NA, Zaman BT, Bakırdere S. 2020. Ultra-trace cadmium determination in eucalyptus and rosemary tea samples using a novel method: deep eutectic solvent based magnetic nanofluid liquid phase microextraction-slotted quartz tube-flame atomic absorption spectrometry. J Anal At Spectrom. 35(11):2565–2572. doi: 10.1039/D0JA00276C.
  • Koosha E, Shamsipur M, Salimi F, Ramezani M. 2021. A microextraction method based on precipitation for the simultaneous separation and preconcentration of cadmium and lead before their determination by FAAS: experimental design methodology. Sep Sci Technol. 56(10):1721–1729. doi: 10.1080/01496395.2020.1788597.
  • Krata AA, Wojciechowski M, Kalabun M, Bulska E. 2018. Reference measurements of cadmium and lead contents in candidates for new environmental certified materials by isotope dilution inductively coupled plasma mass spectrometry. Microchem J. 142:36–42. doi: 10.1016/j.microc.2018.06.013.
  • Lemes LFR, Tarley CRT. 2021. Combination of supramolecular solvent-based microextraction and ultrasound-assisted extraction for cadmium determination in flaxseed flour by thermospray flame furnace atomic absorption spectrometry. Food Chem. 357:129695. doi: 10.1016/j.foodchem.2021.129695.
  • Manousi N, Zachariadis GA. 2020. Development and application of an ICP-AES method for the determination of nutrient and toxic elements in savory snack products after autoclave dissolution. Separations. 7(4):66. doi: 10.3390/separations7040066.
  • Mohebbi M, Heydari R, Ramezani M. 2018. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry. J Anal Chem. 73(1):30–35. doi: 10.1134/S1061934818010069.
  • Montoro-Leal P, García-Mesa JC, Cordero MS, Guerrero ML, Alonso EV. 2020. Magnetic dispersive solid phase extraction for simultaneous enrichment of cadmium and lead in environmental water samples. Microchem J. 155:104796. doi: 10.1016/j.microc.2020.104796.
  • Moradi M, Zarabi S, Heydari R. 2021. Spectrophotometric determination of trace amounts of Sb (III) and Sb (V) in water and biological samples by in-tube dispersive liquid–liquid microextraction and air-assisted liquid–liquid microextraction. Chem Pap. 75(12):6499–6508. doi: 10.1007/s11696-021-01818-1.
  • Mousavi KZ, Yamini Y, Seidi S. 2018. Dispersive liquid–liquid microextraction using magnetic room temperature ionic liquid for extraction of ultra-trace amounts of parabens. New J Chem. 42(12):9735–9743. doi: 10.1039/C8NJ01154K.
  • Mousavi L, Tamiji Z, Khoshayand MR. 2018. Applications and opportunities of experimental design for the dispersive liquid–liquid microextraction method–a review. Talanta. 190:335–356. doi: 10.1016/j.talanta.2018.08.002.
  • Qian L, Lei Z, Peng X, Yang G, Wang Z. 2021. Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry. Anal Chim Acta. 1162:338495. doi: 10.1016/j.aca.2021.338495.
  • Qiao L, Tao Y, Yao W, Zhao J, Yan Y. 2022. A magnetic ionic liquid based vortex-assisted dispersive liquid-liquid microextraction coupled with back-extraction for the enrichment of fluoroquinolone antibiotics. J Pharm Biomed Anal. 219:114903. doi: 10.1016/j.jpba.2022.114903.
  • Radaelli M, Scalabrin E, Toscano G, Capodaglio G. 2019. High performance size exclusion chromatography-inductively coupled plasma-mass spectrometry to study the copper and cadmium complexation with humic acids. Molecules. 24(17):3201. doi: 10.3390/molecules24173201.
  • Rahman Z, Singh VP. 2019. The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 191(7):419. doi: 10.1007/s10661-019-7528-7.
  • Rajabi M, Abolhosseini M, Hosseini-Bandegharaei A, Hemmati M, Ghassab N. 2020. Magnetic dispersive micro-solid phase extraction merged with micro-sampling flame atomic absorption spectrometry using (Zn-Al LDH)-(PTh/DBSNa)-Fe3O4 nanosorbent for effective trace determination of nickel (II) and cadmium (II) in food samples. Microchem J. 159:105450. doi: 10.1016/j.microc.2020.105450.
  • Remelli M, Nurchi VM, Lachowicz JI, Medici S, Zoroddu MA, Peana M. 2016. Competition between Cd (II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coord Chem Rev. 327-328:55–69. doi: 10.1016/j.ccr.2016.07.004.
  • Santos AP, Dos Santos MJ, Graças AKM, Lemos VA. 2019. Determination of cadmium in bread and biscuit samples using ultrasound‐assisted temperature‐controlled ionic liquid microextraction. J Sci Food Agric. 99(10):4609–4614. doi: 10.1002/jsfa.9700.
  • Shamsipur M, Mafakheri N, Babajani N. 2022. A natural deep eutectic solvent–based ultrasound-vortex-assisted dispersive liquid–liquid microextraction method for ligand-less pre-concentration and determination of traces of cadmium ions in water and some food samples. Food Anal Methods. 15(5):1203–1213. doi: 10.1007/s12161-021-02222-x.
  • Shanmugaraj BM, Malla A, Ramalingam S. 2019. Cadmium stress and toxicity in plants: an overview. Cadmium toxicity and tolerance in plants. 1–17. doi: 10.1016/B978-0-12-814864-8.00001-2.
  • Sixto A, Mollo A, Knochen M. 2019. Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. J Food Compos Anal. 82:103229. doi: 10.1016/j.jfca.2019.06.001.
  • Tuzen M, Sahiner S, Hazer B. 2016. Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples. Food Chem. 210:115–120. doi: 10.1016/j.foodchem.2016.04.079.
  • Vessally E, Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, Babazadeh M, Hosseinian A, Omidi F, Ebrahimi MH. 2018. Application of switchable solvent-based liquid phase microextraction for preconcentration and trace detection of cadmium ions in baby food samples. J Iran Chem Soc. 15(2):491–498. doi: 10.1007/s13738-017-1249-z.
  • Will C, Huelsmann RD, Mafra G, Merib J, Anderson JL, Carasek E. 2021. High-throughput approach for the in situ generation of magnetic ionic liquids in parallel-dispersive droplet extraction of organic micropollutants in aqueous environmental samples. Talanta. 223(Pt 2):121759. doi: 10.1016/j.talanta.2020.121759.
  • World Health Organization (WHO). 2014. Guidelines for drinking-water quality 2004. 3rd ed. Geneva, Switzerland: WHO.
  • Yang P, Zhou R, Zhang W, Yi R, Tang S, Guo L, Hao Z, Li X, Lu Y, Zeng X. 2019. High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chem. 272:323–328. doi: 10.1016/j.foodchem.2018.07.214.
  • Yao L, Liu H, Wang X, Xu W, Zhu Y, Wang H, Pang L, Lin C. 2018. Ultrasound-assisted surfactant-enhanced emulsification microextraction using a magnetic ionic liquid coupled with micro-solid phase extraction for the determination of cadmium and lead in edible vegetable oils. Food Chem. 256:212–218. doi: 10.1016/j.foodchem.2018.02.132.
  • Yao T, Du K. 2020. Simultaneous determination of sulfonamides in milk: ın-situ magnetic ionic liquid dispersive liquid-liquid microextraction coupled with HPLC. Food Chem. 331:127342. doi: 10.1016/j.foodchem.2020.127342.
  • Zhang N, Shen K, Yang X, Li Z, Zhou T, Zhang Y, Sheng Q, Zheng J. 2018. Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap. Food Chem. 264:462–470. doi: 10.1016/j.foodchem.2018.05.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.