176
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of different regression models for detection of adulteration of mustard and canola oil with argemone oil using fluorescence spectroscopy coupled with chemometrics

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 105-119 | Received 04 Sep 2023, Accepted 10 Dec 2023, Published online: 05 Jan 2024

References

  • Ai F, Bin J, Zhang Z, Huang J, Wang J, Liang Y, Yu L, Yang Z. 2014. Application of random forests to select premium quality vegetable oils by their fatty acid composition. Food Chem. 143:472–478. doi: 10.1016/j.foodchem.2013.08.013.
  • Ali H, Saleem M, Anser MR, Khan S, Ullah R, Bilal M. 2018. Validation of fluorescence spectroscopy to detect adulteration of edible oil in extra virgin olive oil (EVOO) by applying chemometrics. Appl Spectrosc. 72(9):1371–1379. doi: 10.1177/0003702818768485.
  • Amsaraj R, Mutturi S. 2023. Rapid detection of sunset yellow adulteration in tea powder with variable selection coupled to machine learning tools using spectral data. J Food Sci Technol. 60(5):1530–1540. doi: 10.1007/s13197-023-05694-3.
  • Ansari KM, Dhawan A, Khanna SK, Das M. 2005. In vivo DNA damaging potential of sanguinarine alkaloid, isolated from argemone oil, using alkaline Comet assay in mice. Food Chem Toxicol. 43(1):147–153. doi: 10.1016/j.fct.2004.09.005.
  • Babu CK, Khanna SK, Das M. 2007. Adulteration of mustard cooking oil with argemone oil: do Indian Food Regulatory Policies and Antioxidant Therapy both need revisitation? Antioxid Redox Signal. 9(4):515–525. doi: 10.1089/ars.2006.1492.
  • Bansal S, Singh A, Mangal M, Mangal AK, Kumar S. 2017. Food adulteration: sources, health risks, and detection methods. Crit Rev Food Sci Nutr. 57(6):1174–1189. doi: 10.1080/10408398.2014.967834.
  • Becze A, Simedru D. 2020. Rapid detection of walnut and pumpkin oil adulteration using Raman spectroscopy and partial least square methodology. Not Bot Horti Agrobo. 48(3):1426–1438. doi: 10.15835/nbha48312024.
  • Bian X, Wu D, Zhang K, Liu P, Shi H, Tan X, Wang Z. 2022. Variational mode decomposition weighted multiscale support vector regression for spectral determination of rapeseed oil and rhizoma Alpiniae Offcinarum adulterants. Biosensors (Basel). 12(8):586. doi: 10.3390/bios12080586.
  • Boateng AA, Sumaila S, Lartey M, Oppong MB, Opuni KFM, Adutwum LA. 2022. Evaluation of chemometric classification and regression models for the detection of syrup adulteration in honey. LWT. 163:113498. doi: 10.1016/j.lwt.2022.113498.
  • Brahmachari G, Gorai D, Roy R. 2013. Argemone mexicana: chemical and pharmacological aspects. Rev Brasil Farmacognosia. 23(3):559–575. doi: 10.1590/S0102-695X2013005000021.
  • Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler J. 2013. API design for machine learning software: experiences from the scikit-learn project [Internet]; [accessed 2023 Aug 22]. http://arxiv.org/abs/1309.0238.
  • Calle JLP, Barea-Sepúlveda M, Ruiz-Rodríguez A, Álvarez JÁ, Ferreiro-González M, Palma M. 2022. Rapid detection and quantification of adulterants in fruit juices using machine learning tools and spectroscopy data. Sensors (Basel). 22(10):3852. doi: 10.3390/s22103852.
  • de Santana FB, Mazivila SJ, Gontijo LC, Neto WB, Poppi RJ. 2018. Rapid discrimination between authentic and adulterated Andiroba Oil using FTIR-HATR spectroscopy and random forest. Food Anal Methods. 11(7):1927–1935. doi: 10.1007/s12161-017-1142-5.
  • Dubie J, Stancik A, Morra M, Nindo C. 2013. Antioxidant extraction from mustard (Brassica juncea) seed meal using high-intensity ultrasound. J Food Sci. 78(4):E542–E548. doi: 10.1111/1750-3841.12085.
  • Gagneten M, Buera M. d P, Rodríguez SD. 2021. Evaluation of SIMCA and PLS algorithms to detect adulterants in canola oil by FT-IR. Int J of Food Sci Tech. 56(6):2596–2603. doi: 10.1111/ijfs.14866.
  • Galeano Díaz T, Durán Merás I, Correa CA, Roldán B, Rodríguez Cáceres MI. 2003. Simultaneous fluorometric determination of chlorophylls a and b and pheophytins a and b in olive oil by partial least-squares calibration. J Agric Food Chem. 51(24):6934–6940. doi: 10.1021/jf034456m.
  • Ghosh P, Krishna Reddy MM, Sashidhar RB. 2005. Quantitative evaluation of sanguinarine as an index of argemone oil adulteration in edible mustard oil by high performance thin layer chromatography. Food Chem. 91(4):757–764. doi: 10.1016/j.foodchem.2004.10.012.
  • Grigoriadou D, Tsimidou MZ. 2006. Quality control and storage studies of virgin olive oil: exploiting UV spectrophotometry potential. Eur J Lipid Sci Technol. 108(1):61–69. doi: 10.1002/ejlt.200500204.
  • Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. 2021. Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol J. 19(9):1693–1712. doi: 10.1111/pbi.13636.
  • Jamwal R, Kumari S, Balan B, Dhaulaniya AS, Kelly S, Cannavan A, Singh DK. Amit 2020. Attenuated total Reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy coupled with chemometrics for rapid detection of argemone oil adulteration in mustard oil. LWT. 120:108945. doi: 10.1016/j.lwt.2019.108945.
  • Jamwal R, Kumari S, Kelly S, Cannavan A, Singh DK. Amit 2020. Rapid detection of pure coconut oil adulteration with fried coconut oil using ATR-FTIR spectroscopy coupled with multivariate regression modelling. LWT. 125:109250. doi: 10.1016/j.lwt.2020.109250.
  • Janovská M, Kubala M, Simánek V, Ulrichová J. 2009. Fluorescence of sanguinarine: fundamental characteristics and analysis of interconversion between various forms. Anal Bioanal Chem. 395(1):235–240. doi: 10.1007/s00216-009-2903-9.
  • Jha SN, Garg R. 2010. Non-destructive prediction of quality of intact apple using near infrared spectroscopy. J Food Sci Technol. 47(2):207–213. doi: 10.1007/s13197-010-0033-1.
  • Khan IA, Abourashed EA. 2010. Leung’s Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. 3rd ed. New Jersey: Wiley.
  • Kongbonga YGM, Ghalila H, Onana MB, Majdi Y, Lakhdar ZB, Mezlini H, Sevestre-Ghalila S. 2011. Characterization of vegetable oils by fluorescence spectroscopy. FNS. 02(07):692–699. doi: 10.4236/fns.2011.27095.
  • Kotwa E, Jørgensen B, Brockhoff PB, Frosch S. 2013. Automatic scatter detection in fluorescence landscapes by means of spherical principal component analysis. J Chemom. 27(1-2):3–11. doi: 10.1002/cem.2485.
  • Li M-X, Li Y-Z, Chen Y, Wang T, Yang J, Fu H-Y, Yang X-L, Li X-F, Zhang G, Chen Z-P, et al. 2021. Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz. Microchem J. 171:106884. doi: 10.1016/j.microc.2021.106884.
  • Liu S, Shirai H, Zuo J, Yang X, Li X, Kamruzzaman M, Fan W. 2020. Characterizing the interactions between copper ions and dissolved organic matter using fluorescence excitation–emission matrices with two-dimensional Savitzky–Golay second-order differentiation. Ecotoxicol Environ Saf. 188:109834. doi: 10.1016/j.ecoenv.2019.109834.
  • MacArthur RL, Teye E, Darkwa S. 2020. Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models. Vib Spectrosc. 110:103129. doi: 10.1016/j.vibspec.2020.103129.
  • Mohammadi M, Khanmohammadi Khorrami M, Vatani A, Ghasemzadeh H, Vatanparast H, Bahramian A, Fallah A. 2021. Genetic algorithm based support vector machine regression for prediction of SARA analysis in crude oil samples using ATR-FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 245:118945. doi: 10.1016/j.saa.2020.118945.
  • Olawode EO, Tandlich R, Cambray G. 2018. 1H-NMR profiling and chemometric analysis of selected honeys from South Africa, Zambia, and Slovakia. Molecules. 23(3):578. doi: 10.3390/molecules23030578.
  • Rajković D, Marjanović Jeromela A, Pezo L, Lončar B, Grahovac N, Kondić Špika A. 2023. Artificial neural network and random forest regression models for modelling fatty acid and tocopherol content in oil of winter rapeseed. J Food Compos Anal. 115:105020. doi: 10.1016/j.jfca.2022.105020.
  • Saleem M, Ali H, Bilal M, Atta BM, Ahmad N. 2023. Quality analysis of canola and mustard oil using fluorescence spectroscopy. J Fluoresc. 33(5):1695–1704. [accessed 2023 Sep 3]. doi: 10.1007/s10895-023-03185-4.
  • Sehwag S, Das M. 2015. A Brief Overview: present Status on Utilization of Mustard Oil and Cake. Indian J Tradit Knowl. 14(2):244–250.
  • Sharma T, Brahma B, Laskar AAM, Paul J, Sharma T, Brahma B, Laskar AA, Paul J. 2023. Clinical profile and outcomes of epidemic dropsy patients attending a tertiary care centre in Assam, India. Cureus [Internet]. 15(4):e37408. [accessed 2023 Aug 22] doi: 10.7759/cureus.37408.
  • Sharma N, Mohan N, Bhalla A, Sharma A, Singh S. 2013. Changing pattern of epidemic dropsy in North India. Asia Pac J Med Toxicol. 2(3):87–91. doi: 10.22038/apjmt.2013.1668.
  • Sikorska E, Khmelinskii I, Sikorski M, Sikorska E, Khmelinskii I, Sikorski M. 2012. Analysis of olive oils by fluorescence spectroscopy: methods and applications. Croatia: IntechOpen; [accessed 2023 Aug 22]. doi: 10.5772/30676.
  • Sonkar SK, Kumar S, Alam M, Atam V, King Georges Medical University, Lucknow 2019. A case series of ten patients of epidemic dropsy June 2018 in a tertiary care centre. CMRO. 02(12):375–377. doi: 10.15520/jcmro.v2i12.240.
  • Thiyam-Holländer U, Aladedunye F, Logan A, Yang H, Diehl BWK. 2014. Identification and quantification of canolol and related sinapate precursors in Indian mustard oils and Canadian mustard products. Euro J Lipid Sci & Tech. 116(12):1664–1674. doi: 10.1002/ejlt.201400222.
  • Thomas J, Kuruvilla KM, Hrideek TK. 2012. 21 - Mustard. In: peter KV, editor. Handbook of herbs and spices (Second Edition) [Internet]. England: Woodhead Publishing; [accessed 2023 Aug 22]; p. 388–398. doi: 10.1533/9780857095671.388.
  • Truong A-T, Kim S, Yoon B. 2022. Determination of honey adulterated with corn syrup by quantitative amplification of maize residual DNA using ultra-rapid real-time PCR. J Sci Food Agric. 102(2):774–781. doi: 10.1002/jsfa.11411.
  • Vieira LS, Assis C, de Queiroz MELR, Neves AA, de Oliveira AF. 2021. Building robust models for identification of adulteration in olive oil using FT-NIR, PLS-DA and variable selection. Food Chem. 345:128866. doi: 10.1016/j.foodchem.2020.128866.
  • Wang X, Wang G, Hou X, Nie S. 2020. A rapid screening approach for authentication of olive oil and classification of binary blends of olive oils using low-field nuclear magnetic resonance spectra and support vector machine. Food Anal Methods. 13(10):1894–1905. doi: 10.1007/s12161-020-01799-z.
  • Wang Z, Wu Q, Kamruzzaman M. 2022. Portable NIR spectroscopy and PLS based variable selection for adulteration detection in quinoa flour. Food Control. 138:108970. doi: 10.1016/j.foodcont.2022.108970.
  • Wang X-Z, Wu H-L, Wang T, Chen A-Q, Sun H-B, Ding Z-W, Chang H-Y, Yu R-Q. 2023. Rapid identification and semi-quantification of adulteration in walnut oil by using excitation–emission matrix fluorescence spectroscopy coupled with chemometrics and ensemble learning. J Food Compos Anal. 117:105094. doi: 10.1016/j.jfca.2022.105094.
  • Yuan L, Meng X, Xin K, Ju Y, Zhang Y, Yin C, Hu L. 2023. A comparative study on classification of edible vegetable oils by infrared, near infrared and fluorescence spectroscopy combined with chemometrics. Spectrochim Acta A Mol Biomol Spectrosc. 288:122120. doi: 10.1016/j.saa.2022.122120.
  • Zandomeneghi M, Carbonaro L, Caffarata C. 2005. Fluorescence of vegetable oils: olive oils. J Agric Food Chem. 53(3):759–766. doi: 10.1021/jf048742p.
  • Zaroual H, El Hadrami EM, Karoui R. 2021. Preliminary study on the potential application of Fourier-transform mid-infrared for the evaluation of overall quality and authenticity of Moroccan virgin olive oil. J Sci Food Agric. 101(7):2901–2911. doi: 10.1002/jsfa.10922.
  • Zou Z, Wu Q, Long T, Zou B, Zhou M, Wang Y, Liu B, Luo J, Yin S, Zhao Y, et al. 2023. Classification and adulteration of mengding mountain green tea varieties based on fluorescence hyperspectral image method. J Food Compos Anal. 117:105141. doi: 10.1016/j.jfca.2023.105141.
  • Zou Z, Chen J, Wu W, Luo J, Long T, Wu Q, Wang Q, Zhen J, Zhao Y, Wang Y, et al. 2023. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics. Front Plant Sci. 14:1127108. [Internet]. [accessed 2023 Dec 7]. doi: 10.3389/fpls.2023.1127108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.