238
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review of CRISPR-Cas and PCR-based methods for the detection of animal species in the food chain-current challenges and future prospects

, , , &
Pages 213-227 | Received 26 Oct 2023, Accepted 08 Jan 2024, Published online: 29 Jan 2024

References

  • Adenuga BM, Montowska MA. 2023. Systematic review of DNA‐based methods in authentication of game and less common meat species. Compr Rev Food Sci Food Saf. 22(3):2112–2160. doi: 10.1111/1541-4337.13142.
  • Ahamad MNU, Hossain MAM, Uddin SMK, Sultana S, Nizar NNA, Bonny SQ, Johan MR, Ali ME. 2019. Tetraplex real-time PCR with TaqMan probes for discriminatory detection of cat, rabbit, rat and squirrel DNA in food products. Eur Food Res Technol. 245(10):2183–2194. doi: 10.1007/s00217-019-03326-9.
  • Ahmad Nizar NN, Ali ME, Hossain MAM, Sultana S, Ahamad MNU. 2018. Double gene targeting PCR assay for detecting Crocodylus porosus in commercial products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(6):1038–1051. doi: 10.1080/19440049.2018.144064.
  • Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, Bhargava SK. 2018. Gelatin controversies in food, pharmaceuticals, and personal care products: authentication methods, current status, and future challenges. Crit Rev Food Sci Nutr. 58 (9):1495–1511. doi: 10.1080/10408398.2016.1264361.
  • Ali ME, Hamid SBA, Razzak MA, Rashid NRA, Al Amin M, Mustafa S. Asing 2015. A suitable method to detect potential fraud of bringing Malayan box turtle (Cuora amboinensis) meat into the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(8):1223–1233. doi: 10.1080/19440049.2015.1058535.
  • Ali ME, Kashif M, Uddin K, Hashim U, Mustafa S, Che Man YB. 2012. Species authentication methods in foods and feeds: the present, past, and future of halal forensics. Food Anal Methods. 5(5):935–955. doi: 10.1007/s12161-011-9357-3.
  • Alikord M, Keramat J, Kadivar M, Momtaz H, Eshtiaghi MN, Homayouni-Rad A. 2017. Multiplex-PCR as a rapid and sensitive method for identification of meat species in halal meat products. Recent Pat Food Nutr Agric. 8(3):175–182. doi: 10.2174/2212798409666170113151213.
  • Alimentarius C. codex Stan. 192. 1995. Norme générale Codex pour les additifs alimentaires. 2015.
  • Al-Taghlubee D, Misaghi A, Shayan P, Basti AA, Gandomi H, Shayan D. 2019. Comparison of two multiplex PCR systems for meat species authentication. J Food Qual Hazards Control. 6(1):8–15. doi: 10.18502/jfqhc.6.1.453.
  • Aravind Kumar N, Vishnuraj MR, Vaithiyanathan S, Srinivas C, Chauhan A, Barbuddhe SB. 2023. Droplet digital PCR assay with linear regression models for quantification of buffalo-derived materials in different food matrices. Food Anal Methods. 16(3):615–625. doi: 10.1007/s12161-022-02441-w.
  • Asing, Ali E, Hamid SBA, Hossain M, Ahamad MNU, Azad Hossain SM, Naquiah N, Zaidul ISM. 2016. Duplex realtime PCR assay using SYBR Green to detect and quantify Malayan box turtle (Cuora amboinensis) materials in meatballs, burgers, frankfurters and traditional Chinese herbal jelly powder. Food Addit Contam A Chem Anal Control Expo Risk Assess. 33(11):1643–1659. doi: 10.1080/19440049.2016.1236403.
  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1709–1712. doi: 10.1126/science.1138140.
  • Barrangou R, Marraffini LA. 2014. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell. 54(2):234–244. doi: 10.1016/j.molcel.2014.03.011.
  • Bhatt MM, Mantoo IA, Salahuddin M, Adil S, Ashraf Pal M. 2016. Meat adulteration in cooked mutton kebab with cattle and buffalo meat and its detection using mitochondrial DNA (MTDNA) based multiplex PCR. Asian J Anim Vet Adv. 11(8):505–510. doi: 10.3923/ajava.2016.505.51.
  • Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 321(5891):960–964. doi: 10.1126/science.1159689.
  • Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, Li J, Ping J, He L, Shen H, et al. 2020. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: a promising method in the point-of-care detection. Biosens Bioelectron. 169:112642. doi: 10.1016/j.bios.2020.112642.
  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS. 2014. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 24(1):132–141. doi: 10.1101/gr.162339.113.
  • Cui K, Liu Y, Zhu L, Mei X, Jin P, Luo Y. 2019. Association between intake of red and processed meat and the risk of heart failure: a meta-analysis. BMC Public Health. 19(1):354. doi: 10.1186/s12889-019-6653-0.
  • Dalsecco LS, Palhares RM, Oliveira PC, Teixeira LV, Drummond MG, de Oliveira DA. 2018. A fast and reliable real‐time PCR method for detection of ten animal species in meat products. J Food Sci. 83(2):258–265. doi: 10.1111/1750-3841.14001.
  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471(7340):602–607. doi: 10.1038/nature09886.
  • Eufic. 2004. Preservatives to keep foods longer – and safer. [accessed 2020 Jan 19]. https://www.eufic.org/en/whats-in-food/article/preservatives-to-keep-foods-longer-and-safer.
  • Garibyan L, Avashia N. 2013. Polymerase chain reaction. J Invest Dermatol. 133(3):1–4. doi: 10.1038/jid.2013.1.
  • Garino C, Winter R, Broll H, Winkel M, Braeuning A, Reich F, Zagon J. 2022. Development and validation of a novel real-time PCR protocol for the detection of buffalo worm (Alphitobius diaperinus) in food. Food Control. 140:109138. doi: 10.1016/j.foodcont.2022.109138.
  • Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468(7320):67–71. doi: 10.1038/nature09523.
  • Graham DB, Root DE. 2015. Resources for the design of CRISPR gene editing experiments. Genome Biol. 16(1):260. doi: 10.1186/s13059-015-0823-x.
  • Grundy SM. 2007. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 92(2):399–404. doi: 10.1210/jc.2006-0513.
  • Grundy SM. 2008. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 28(4):629–636. doi: 10.1161/ATVBAHA.107.151092.
  • Guo L, Yu Y, Xu W-L, Li C-D, Liu G-Q, Qi L, Luo J-X, Guo Y-S. 2020. Simultaneous detection of ovine and caprine DNA in meat and dairy products using triplex TaqMan real‐time PCR. Food Sci Nutr. 8(12):6467–6476. doi: 10.1002/fsn3.1936.
  • Hardinge P, Murray JA. 2019. Reduced false positives and improved reporting of loop-mediated isothermal amplification using quenched fluorescent primers. Sci Rep. 9(1):7400. doi: 10.1038/s41598-019-43817-z.
  • Hossain MAM, Ali ME, Sultana S, Bonny SQ, Kader MA, Rahman MA. Asing 2017. Quantitative tetraplex real-time polymerase chain reaction assay with TaqMan probes discriminates cattle, buffalo, and porcine materials in food chain. J Agric Food Chem. 65(19):3975–3985. doi: 10.1021/acs.jafc.7b00730.
  • Hossain MM, Abidin SASZ, Bujang A, Taib MN, Sagadevan S, Johan MR, Nizar NNA. 2023. TaqMan multiplex qPCR for detecting animal species in meat and meat products: development, recent advances and future prospects. Food Control. 150:109761. doi: 10.1016/j.foodcont.2023.109761.
  • Hossain MM, Uddin KS, Chowdhury ZZ, Sultana S, Ali ME. 2019. Universal mitochondrial 16s rRNA biomarker for mini-barcode to identify fish species in Malaysian fish products. Food Addit. Contam. 36(4):493–506.
  • Hossain MM, Uddin SMK, Sultana S, Hashem A, Rizou M, Aldawoud TM, Johan MR. 2020b. DNA-based methods for species identification in food forensic science. Food Chem Toxicol. 181–194.
  • Hossain MM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. 2020a. Authentication of Halal and Kosher meat and meat products: analytical approaches, current progress and future prospects. Crit. Rev. Food Sci. Nutr. 62(2):285–310.
  • Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 31(9):827–832. 63. doi: 10.1038/nbt.2647.
  • Hsu YH, Yang WC, Chan KW. 2021. Bushmeat species identification: recombinase polymerase amplification (RPA) combined with lateral flow (LF) strip for identification of Formosan reeves’ muntjac (Muntiacus reevesi micrurus). Animals. 11(2):426. doi: 10.3390/ani11020426.
  • Hu W, Wu S, Yu X, Abullahi AY, Song M, Tan L, Wang Z, Jiang B, Li G. 2015. A multiplex PCR for simultaneous detection of three zoonotic parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A. Biomed Res. Int. 2015:1–6. doi: 10.1155/2015/406168.
  • Iwobi AN, Huber I, Hauner G, Miller A, Busch U. 2011. Biochip technology for the detection of animal species in meat products. Food Anal Methods. 4(3):389–398. doi: 10.1007/s12161-010-9178-9.
  • Jakočiūnas T, Jensen MK, Keasling JD. 2015. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng. 34:44–59. doi: 10.1016/j.ymben.2015.12.003.
  • Jolany Vangah S, Katalani C, Boone HA, Hajizade A, Sijercic A, Ahmadian G. 2020. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol Proced Online. 22(1):22. doi: 10.1186/s12575-020-00135-3.
  • Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. 2021. CRISPR-based diagnostics. Nat Biomed Eng. 5(7):643–656. doi: 10.1038/s41551-021-00760-7.
  • Karabasanavar NS, Singh SP, Kumar D, Shebannavar SN. 2014. Detection of pork adulteration by highly specific PCR assay of mitochondrial D-loop. Food Chem. 145:530–534. 15 doi: 10.1016/j.foodchem.2013.08.084.
  • Kesmen Z, Gulluce A, Sahin F, Yetim H. 2009. Identification of meat species by TaqMan-based real-time PCR assay. Meat Sci. 82(4):444–449. doi: 10.1016/j.meatsci.2009.02.019.
  • Kim MJ, Kim HY. 2019. A fast multiplex real-time PCR assay for simultaneous detection of pork, chicken, and beef in commercial processed meat products. Lwt. 114:108390. doi: 10.1016/j.lwt.2019.108390.
  • Kim MJ, Lee YM, Suh SM, Kim HY. 2020. Species identification of red deer (Cervus elaphus), roe deer (Capreolus capreolus), and water deer (Hydropotes inermis) using capillary electrophoresis-based multiplex PCR. Foods. 9(8):982. doi: 10.3390/foods9080982.
  • Kissenkötter J, Böhlken-Fascher S, Forrest MS, Piepenburg O, Czerny CP, Abd El Wahed A. 2020. Recombinase polymerase amplification assays for the identification of pork and horsemeat. Food Chem. 322:126759. doi: 10.1016/j.foodchem.2020.126759.
  • Kumar D, Kumar RR, Rana P, Mendiratta SK, Agarwal RK, Singh P, Kumari S, Jawla J. 2021. On point identification of species origin of food animals by recombinase polymerase amplification-lateral flow (RPA-LF) assay targeting mitochondrial gene sequences. J Food Sci Technol. 58(4):1286–1294. doi: 10.1007/s13197-020-04637-6.
  • La Neve F, Civera T, Mucci N, Bottero MT. 2008. Authentication of meat from game and domestic species by SNaPshot minisequencing analysis. Meat Sci. 80(2):216–224. doi: 10.1016/j.meatsci.2007.11.027.
  • Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. 2011. The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci. 94(9):4441–4456. doi: 10.3168/jds.2010-4046.
  • Li C, Li W, Zhou Z, Chen H, Xie C, Lin Y. 2020. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene‐free bacterial blight‐resistant rice. Plant Biotechnol J. 18(2):313–315. doi: 10.1111/pbi.13217.
  • Majid MA, Abidin IH, Majid HA, Chik CT. 2015. Issues of halal food implementation in Malaysia. J Appl Environ Biol Sci. 5(6):50–56.
  • Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, et al. 2011. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol. 9(6):467–477. doi: 10.1038/nrmicro2577.
  • Markl CM, Mafra I. 2023. Techniques for food authentication: trends and emerging approaches. Foods. 12(6):1134. doi: 10.3390/foods12061134.
  • Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 322(5909):1843–1845. doi: 10.1126/science.1165771.
  • Meyer A, Dastgheib-Vinarov S. 2021. The future of food? CRISPR-edited agriculture. FDLI Update, 14.
  • Mohamad NA, El Sheikha AF, Mustafa S, Mokhtar NFK. 2013. Comparison of gene nature used in real-time PCR for porcine identification and quantification: a review. Food Res Int. 50(1):330–338. doi: 10.1016/j.foodres.2012.10.047.
  • Nagai S, Miyamoto S, Ino K, Tajimi S, Nishi H, Tomono J. 2016. Easy detection of multiple Alexandrium species using DNA chromatography chip. Harmful Algae. 51:97–106. doi: 10.1016/j.hal.2015.10.014.
  • Naveena BM, Jagadeesh DS, Babu AJ, Rao TM, Kamuni V, Vaithiyanathan S, Kulkarni VV, Rapole S. 2017. OFFGEL electrophoresis and tandem mass spectrometry approach compared with DNA-based PCR method for authentication of meat species from raw and cooked ground meat mixtures containing cattle meat, water buffalo meat and sheep meat. Food Chem. 233:311–320. doi: 10.1016/j.foodchem.2017.04.116.
  • Oliveros JC, Franch M, Tabas-Madrid D, San-León D, Montoliu L, Cubas P, Pazos F. 2016. Breaking-Cas interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res. 44(W1):W267–W271. doi: 10.1093/nar/gkw407.
  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 31(9):839–843. 64. doi: 10.1038/nbt.2673.
  • Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, Ventura A. 2017. GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol. 35(4):347–349. doi: 10.1038/nbt.3804.
  • Rahman MM, Ali ME, Hamid SBA, Mustafa S, Hashim U, Hanapi UK. 2014. Polymerase chain reaction assay targeting cytochrome b gene for the detection of dog meat adulteration in meatball formulation. Meat Sci. 97(4):404–409. doi: 10.1016/j.meatsci.2014.03.011.
  • Rahmat S, Cheong CB, Abd Hamid MS. 2016. Challenges of developing countries in complying quality and enhancing standards in food industries. Proc Soc Behav Sci. 224:445–451. doi: 10.1016/j.sbspro.2016.05.418.
  • Ramos SC, Mingala CN, Balagan EJ, Domingo LM, Dimalanta FG. 2016. Molecular evaluation of pork, beef and poultry meat sold in Nueva Ecija, Philippines for the presence of horse (Equus caballus) and rat (Rattus rattus) DNA using polymerase chain reaction assay. Philipp J Vet Med. 1(1):53.
  • Ranasinghe JA, Stein ED, Miller PE, Weisberg SB. 2012. Performance of two southern California benthic community condition indices using species abundance and presence-only data: relevance to DNA barcoding. PLoS One. 7(8):e40875. doi: 10.1371/journal.pone.0040875.
  • Rashid NRA, Ali ME, Hamid SBA, Rahman MM, Razzak MA, Amin MA. Asing 2015. A suitable method for the detection of a potential fraud of bringing macaque monkey meat into the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 32(7):1013–1022. doi: 10.1080/19440049.2015.1039073.
  • Rohman A, Erwanto Y, Che Man YB. Sismindari 2011. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 88(1):91–95. doi: 10.1016/j.meatsci.2010.12.007.
  • Rojas M, González I, Pavón MÁ, Pegels N, Lago A, Hernández PE, García T, Martín R. 2010. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 27(6):749–763. doi: 10.1080/19440040903503070.
  • Selvam K, Ahmad Najib M, Khalid MF, Ozsoz M, Aziah I. 2022. CRISPR-Cas systems-based bacterial detection: a scoping review. Diagnostics. 12(6):1335. doi: 10.3390/diagnostics12061335.
  • Shi J, Wu X, Wang Z, Li F, Meng Y, Moore RM, Cui J, Xue C, Croce KR, Yurdagul A, et al. 2022. A genome-wide CRISPR screen identifies WDFY3 as a regulator of macrophage efferocytosis. Nat Commun. 13(1):7929. doi: 10.1038/s41467-022-35604-8.
  • Singh R, Kuscu C, Quinlan A, Qi Y, Adli M. 2015. Cas9-chromatin binding information enables more accurate CRISPR off target prediction. Nucleic Acids Res. 43(18):e118–e118. doi: 10.1093/nar/gkv575.
  • Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011. Cas3 is a single‐stranded DNA nuclease and ATP‐dependent helicase in the CRISPR/Cas immune system. Embo J. 30(7):1335–1342. doi: 10.1038/emboj.2011.41.
  • Sousa Junior LPB, Meira AN, Azevedo HC, Muniz EN, Coutinho LL, Mourão GB, Pedrosa VB, Pinto LFB. 2019. Polimorfismos nos genes MyoD1, MyoG, MyF5, MyF6 e MSTN em ovinos Santa Inês. Pesq Agropec Bras. 54:01132. doi: 10.1590/s1678-3921.pab2019.v54.01132.
  • Sultana S, Ali ME, Hossain MAM, Naquiah N, Zaidul ISM. Asing 2017. Universal mini COI barcode for the identification of fish species in processed products. Food Res Int. 105:19–28. doi: 10.1016/j.foodres.2017.10.065.
  • Sultana S, Azlan A, Desa MN, Mahyudin NA. 2023. Multiplex platforms in biosensor based analytical approaches: opportunities and challenges for the speciation of animal species in food chain. Food Cont. 149:109727. doi: 10.1016/j.foodcont.2023.109727.
  • Sultana S, Hossain MM, Azlan A, Johan MR, Chowdhury ZZ, Ali ME. 2020. TaqMan probe based multiplex quantitative PCR assay for determination of bovine, porcine and fish DNA in gelatin admixture, food products and dietary supplements. Food Chem. 325:126756. doi: 10.1016/j.foodchem.2020.126756.
  • Sultana S, Hossain MM, Azrina A, Ali ME. 2019. TaqMan probe-based multiplex PCR-assay to discriminate bovine, porcine, and fish gelatin substitution in food chain. Food Chem. 325:126756.
  • Sultana S, Hossain MM, Naquiah NN, Ali ME. 2018. Novel multiplex PCR-RFLP assay discriminates bovine, porcine and fish gelatin substitution in Asian pharmaceuticals capsule shells. Food Addit Contam A Chem Anal Control Expo Risk Assess. 35(9):1662–1673. doi: 10.1080/19440049.2018.1500719.
  • Wang H, Xu X, Nguyen CM, Liu Y, Gao Y, Lin X, Daley T, Kipniss NH, La Russa M, Qi LS. 2018. CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell. 175(5):1405–1417.e14. doi: 10.1016/j.cell.2018.09.013.
  • Wang L, Hang X, Geng R. 2019. Molecular detection of adulteration in commercial buffalo meat products by multiplex PCR assay. Food Sci Technol. 39(2):344–348. doi: 10.1590/fst.28717.
  • Wood JD. 2017. Meat composition and nutritional value. In: Lawrie’s meat science. 8th ed., Vol. 20; p. 635–659. doi: 10.1016/B978-0-08-100694-8.00020-0.
  • Wu Y, Liu J, Li H-t, Zhang T, Dong Y, Deng S, Lv Y, He Q, Deng R. 2022. CRISPR-Cas system meets DNA barcoding: development of a universal nucleic acid test for food authentication. Sens Actuators, B. 353:131138. doi: 10.1016/j.snb.2021.131138.
  • Xue C, Zhu Y, Zhang X, Shin YK, Sashital DG. 2017. Real-time observation of target search by the CRISPR surveillance complex cascade. Cell Rep. 21(13):3717–3727. doi: 10.1016/j.celrep.2017.11.110.
  • Yan X, Pan Q, Xin H, Chen Y, Ping Y. 2021. Genome-editing prodrug: targeted delivery and conditional stabilization of CRISPR-Cas9 for precision therapy of inflammatory disease. Sci Adv. 7(50):eabj0624. doi: 10.1126/sciadv.abj0624.
  • Yu M, Li Z, Yu Z, He J, Zhou J. 2021. Communication related health crisis on social media: a case of COVID-19 outbreak. Curr Issues Tour. 24(19):2699–2705. doi: 10.1080/13683500.2020.1752632.
  • Zhao J, Xu Z, Chen A, You X, Zhao Y, He W, Zhao L, Yang S. 2019. Identification of meat from yak and cattle using SNP markers with integrated allele-specific polymerase chain reaction–capillary electrophoresis method. Meat Sci. 148:120–126. doi: 10.1016/j.meatsci.2018.08.019.
  • Zhu H, Misel L, Graham M, Robinson ML, Liang C. 2016. CTFinder: a web service for CRISPR optimal target prediction and visualization. Sci Rep. 6(1):25516. doi: 10.1038/srep25516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.