650
Views
0
CrossRef citations to date
0
Altmetric
Articles

Lead exposure from honey: meta-analysis and risk assessment for the Arab region

, &
Pages 271-286 | Received 10 Nov 2023, Accepted 12 Jan 2024, Published online: 25 Jan 2024

References

  • Abdelghani JI, Abu-Nameh ES, Zaitoun ST, Abu-Zir AI. 2019. Preliminary study of the influence of mineral content on quality parameters of Jordanian-origin honey collected from different geographical regions. J Food Sci Technol. 56(11):4817–4825. doi: 10.1007/s13197-019-03942-z.
  • Abd-Elkader RE, Bellail AA, Attia AI, Mousa MM, Hamied IA. 2016. Mineral content and antioxidant activity of different sample of Libyan bees honey. J Nucl Technol Appl Sci. 4(3):123–135.
  • Abu-Almaaly RA. 2021. Effect of local honey production areas on its content of some heavy metals. Iraqi J Mark Res Consum Prot. 13(2):116–124. doi: 10.28936/jmracpc13.2.2021.(10).
  • Ahmed MBM, Taha AA, Mehaya FMS. 2023. Method validation and risk assessment for sulfonamides and tetracyclines in bees’ honey from Egypt, Libya and Saudi Arabia. Environ Geochem Health. 45(3):997–1011. doi: 10.1007/s10653-022-01258-0.
  • Ahmida MHS, Elwerfali S, Agha A, Elagori M, Ahmida NHS. 2013. Physicochemical, heavy metals and phenolic compounds analysis of Libyan honey samples collected from Benghazi during 2009–2010. FNS. 04(01):33–40. doi: 10.4236/fns.2013.41006.
  • Ahmida NHS, Towier NH, Shaboun S, Rahil S, Ahmida A, Randa E, Elgazali A. 2021. The contents of some macro and trace elements in uniflora and multiflora honey samples collected from three regions in east Libya. Adv J Chem B. 3(4):361–374. doi: 10.22034/ajcb.2021.316305.1099.
  • Al Tufail MA, Al Araidh IA. 2006. Comparative study of 11 honey samples sold in Riyadh Saudi Arabia. Qatar Univ Sci J. 26:123–133.
  • Al-Fattah MA, Tharwat EE, Ewies MA, Farag RM. 2007. The major honeys as indicators of metals in the Egyptian environment. J Plant Prot Pathol. 32(6):4853–4860. doi: 10.21608/jppp.2007.219644.
  • Al-Ghamdi A, Nuru A. 2013. Beekeeping in the kingdom of Saudi Arabia opportunities and challenges. Bee World. 90(3):54–57. doi: 10.1080/0005772X.2013.11417543.
  • Al-Ghamdi AA, Ansari MJ. 2021. Biological and therapeutic roles of Saudi Arabian honey: a comparative review. J King Saud Univ Sci. 33(2):101329. doi: 10.1016/j.jksus.2020.101329.
  • Al-Hindi RR, Shehata A. 2014. Evaluation of antioxidant and antibacterial activities and essential elements content of locally produced honey in Saudi Arabia. Life Sci J. 11(5):175–185.
  • Alma AM, de Groot GS, Buteler M. 2023. Microplastics incorporated by honeybees from food are transferred to honey, wax and larvae. Environ Pollut. 320:121078. doi: 10.1016/j.envpol.2023.121078.
  • Alqarni AS, Owayss AA, Mahmoud AA, Hannan MA. 2014. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J Saudi Chem Soc. 18(5):618–625. doi: 10.1016/j.jscs.2012.11.009.
  • Arida H, Hassan R, El-Naggar A. 2012. Quality assessment of honey using modern analytical tools. Anal Lett. 45(11):1526–1536. doi: 10.1080/00032719.2012.675492.
  • Ashraf MW, Akram S. 2008. Physicochemical characteristics and heavy metal contents of Saudi Arabian floral honeys. Fresenius Environ Bull. 17(7b):877–881.
  • Ashraf SA, Mahmood D, Elkhalifa AEO, Siddiqui AJ, Khan MI, Ashfaq F, Patel M, Snoussi M, Kieliszek M, Adnan M. 2023. Exposure to pesticide residues in honey and its potential cancer risk assessment. Food Chem Toxicol. 180:114014. doi: 10.1016/j.fct.2023.114014.
  • Atrouse OM, Oran SA, Al‐Abbadi SY. 2004. Chemical analysis and identification of pollen grains from different jordanian honey samples. Int J of Food Sci Tech. 39(4):413–417. doi: 10.1111/j.1365-2621.2004.00798.x.
  • Badran GF, Atta MB, Badr MR. 2023. Physicochemical characteristics of citrus and clover honey collected from different Egyptian regions. J Sustain Agric Sci. 2(1):99–114. doi: 10.21608/jsaes.2023.192613.1031.
  • Bakour M, Laaroussi H, Ferreira-Santos P, Genisheva Z, Ousaaid D, Teixeira JA, Lyoussi B. 2022. Exploring the palynological, chemical, and bioactive properties of non-studied bee pollen and honey from Morocco. Molecules. 27(18):5777. doi: 10.3390/molecules27185777.
  • Balduzzi S, Rücker G, Schwarzer G. 2019. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 22(4):153–160. doi: 10.1136/ebmental-2019-300117.31563865.
  • Bazeyad AY, Al-Sarar AS, Rushdi AI, Hassanin AS, Abobakr Y. 2019. Levels of heavy metals in a multifloral Saudi honey. Environ Sci Pollut Res Int. 26(4):3946–3953. doi: 10.1007/s11356-018-3909-7.
  • Belouali H, Bouaka M, Hakkou A. 2008. Determination of some major and minor elements in the east of Morocco honeys through inductively coupled plasma optical emission spectrometry. Apiacta. 43:17–24.
  • Bereksi-Reguig D, Allali H, Bouchentouf S, Adamczuk A, Kowalska G, Kowalski R. 2020. Analysis of trace-elements and toxic heavy metals in honeys from Tlemcen Province, north-western Algeria. Agric Conspec Sci. 85(4):367–374.
  • Bereksi-Reguig D, Bouchentouf S, Allali H, Adamczuk A, Kowalska G, Kowalski R. 2022. Trace elements and heavy metal contents in west Algerian natural honey. J Anal Methods Chem. 2022:e7890856. doi: 10.1155/2022/7890856.
  • Bommuraj V, Chen Y, Klein H, Sperling R, Barel S, Shimshoni JA. 2019. Pesticide and trace element residues in honey and beeswax combs from Israel in association with human risk assessment and honey adulteration. Food Chem. 299:125123. doi: 10.1016/j.foodchem.2019.125123.
  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2010. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 1(2):97–111. doi: 10.1002/jrsm.12.
  • Bosancic B, Zabic M, Mihajlovic D, Samardzic J, Mirjanic G. 2020. Comparative study of toxic heavy metal residues and other properties of honey from different environmental production systems. Environ Sci Pollut Res Int. 27(30):38200–38211. doi: 10.1007/s11356-020-09882-y.
  • Bouhlali E, Dine T, Bammou M, Sellam K, El Midaoui A, Bourkhis B, Ennassir J, Alem C, Filali-Zegzouti Y. 2019. Physicochemical properties of eleven monofloral honey samples produced in Morocco. Arab J Basic Appl Sci. 26(1):476–487. doi: 10.1080/25765299.2019.1687119.
  • Boussaid A, Chouaibi M, Rezig L, Hellal R, Donsì F, Ferrari G, Hamdi S. 2018. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab J Chem. 11(2):265–274. doi: 10.1016/j.arabjc.2014.08.011.
  • [CAC] Codex Alimentarius Commission 2022. Report of the 15th session of the codex committee on contaminants in food. REP22/CF15. https://www.fao.org/fao-who-codexalimentarius/committees/committee/related-meetings/pt/?committee=CCCF.
  • [CAC] Codex Alimentarius Commission. 2023. Codex Alimentarius Commission – 45th session. REP22/CAC. https://www.fao.org/fao-who-codexalimentarius/committees/cac/meetings/pt/
  • Carrington C, Devleesschauwer B, Gibb HJ, Bolger PM. 2019. Global burden of intellectual disability resulting from dietary exposure to lead, 2015. Environ Res. 172:420–429. doi: 10.1016/j.envres.2019.02.023.
  • Chakir A, Romane A, Barbagianni N, Bartoli D. 2011. Major and trace elements in different types of Moroccan honeys. Aust J Basic Appl Sci. 5(4):223–231.
  • Codex Alimentarius. 1995. General standard for contaminants and toxins in food and feed. CXS 193-1995. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B193-1995%252FCXS_193e.pdf.
  • de Oliveira Resende Ribeiro R, Mársico ET, da Silva Carneiro C, Simoes JS, da Silva Ferreira M, de Jesus EFO, Almeida E, Junior CAC. 2015. Seasonal variation in trace and minor elements in Brazilian honey by total reflection X-ray fluorescence. Environ Monit Assess. 187(3):96. doi: 10.1007/s10661-015-4284-1.
  • Dhahir S, Hemed AH. 2015. Determination of heavy metals and trace element levels in honey samples from different regions of Iraq and compared with other kind. Am J Appl Chem. 3(3):83. doi: 10.11648/j.ajac.20150303.11.
  • Di Bella G, Licata P, Potortì AG, Crupi R, Nava V, Qada B, Rando R, Bartolomeo G, Dugo G, Turco VL. 2022. Mineral content and physico-chemical parameters of honey from north regions of Algeria. Nat Prod Res. 36(2):636–643. doi: 10.1080/14786419.2020.1791110.
  • Di Bella G, Potortì AG, Beltifa A, Ben Mansour H, Nava V, Lo Turco V. 2021. Discrimination of Tunisian honey by mineral and trace element chemometrics profiling. Foods. 10(4):724. doi: 10.3390/foods10040724.
  • [EFSA] European Food Safety Authority 2023. Margin of exposure. https://www.efsa.europa.eu/en/topics/topic/margin-exposure.
  • EFSA Panel on Contaminants in the Food Chain (CONTAM). 2010. Scientific opinion on lead in food. EFSA J. 8(4):1570. doi: 10.2903/j.efsa.2010.1570.
  • El Hajj R, Nemer N, Skaff W, Estephan N. 2023. Multivariate approach to analyzing survey data: a case study of beekeeping in Lebanon. J Apic Res. 62(3):459–467. doi: 10.1080/00218839.2021.1987739.
  • Elbagerma M, Mayouf J, Twaish T, Edwards H. 2019. Analysis of trace and essential elements, phenolic and flavonoid compounds in Libyan honey samples collected from Misurata markets. To Chem J. 2:37–46.
  • Elhakam AHA, Moselhy WA, Abdel-Gawad DRI, Abdou KAH. 2021. Honey as a bio indicator of the environmental pollution and its risk assessment in El-Minya province. Turk Online J Qual Inq. 12(9):1685–1701.
  • El-Kazafy AT, Ali MAM. 2012. Determination of heavy metals content in cotton honey in Kafr El-Shiekh province, Egypt. J Plant Prot Pathol. 3(11):1211–1219. doi: 10.21608/jppp.2012.84409.
  • El-Sofany A, Al Naggar Y, Naiem E, Seif A. 2018. Characterization of Apis mellifera honey of different botanical and geographical origins in Egypt. Egypt J Exp Biol (Zoo.). 14(1):75. doi: 10.5455/egysebz.20180523104927.
  • European Union. 2023. Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02023R0915-20230810&qid=1696273658953.
  • Fakhri Y, Abtahi M, Atamaleki A, Raoofi A, Atabati H, Asadi A, Miri A, Shamloo E, Alinejad A, Keramati H, et al. 2019. The concentration of potentially toxic elements (PTEs) in honey: a global systematic review and meta-analysis and risk assessment. Trends Food Sci Technol. 91:498–506. doi: 10.1016/j.tifs.2019.07.011.
  • Falagas ME, Kouranos VD, Arencibia-Jorge R, Karageorgopoulos DE. 2008. Comparison of SCImago journal rank indicator with journal impact factor. FASEB J. 22(8):2623–2628. doi: 10.1096/fj.08-107938.
  • [FAO/WHO] FAO/WHO IEDI Calculation Template 17-Cluster Diet. 2022. https://cdn.who.int/media/docs/default-source/food-safety/gems-food/iedi-calculation-vs04-17clusters.xlsx.
  • Feleafel MN, Mirdad ZM. 2013. Hazard and effects of pollution by lead on vegetable crops. J Agric Environ Ethics. 26(3):547–567. doi: 10.1007/s10806-012-9403-1.
  • Flannery BM, Middleton KB. 2022. Updated interim reference levels for dietary lead to support FDA’s closer to zero action plan. Regul Toxicol Pharmacol. 133:105202. doi: 10.1016/j.yrtph.2022.105202.
  • Friede T, Röver C, Wandel S, Neuenschwander B. 2017. Meta-analysis of two studies in the presence of heterogeneity with applications in rare diseases. Biom J. 59(4):658–671. doi: 10.1002/bimj.201500236.
  • Galiciolli MEA, Lima LS, da Costa N de S, de Andrade DP, Irioda AC, Oliveira CS. 2022. IQ alteration induced by lead in developed and underdeveloped/developing countries: a systematic review and a meta-analysis. Environ Pollut. 292(Pt A):118316. doi: 10.1016/j.envpol.2021.118316.
  • GEMS/Food-EURO 1995. Second workshop on reliable evaluation of low-level contamination of food. EUR/ICP/EHAZ.94.12/WS04. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjfx-6jidiBAxUDGFkFHdWgAigQFnoECBcQAQ&url=http%3A//toolbox.foodcomp.info/References/LOD/GEMS-Food-EURO%2520%2520-%2520%2520Reliable%2520Evaluation%2520of%2520Low-Level%2520Contamination%2520of%2520Food.pdf&usg=AOvVaw2klmWuyw_B_rND4dahheBR&opi=89978449
  • Ghorab A, Rodríguez-Flores MS, Nakib R, Escuredo O, Haderbache L, Bekdouche F, Seijo MC. 2021. Sensorial, melissopalynological and physico-chemical characteristics of honey from Babors Kabylia’s region (Algeria). Foods. 10(2):225. doi: 10.3390/foods10020225.
  • Habib HM, Al Meqbali FT, Kamal H, Souka UD, Ibrahim WH. 2014. Physicochemical and biochemical properties of honeys from arid regions. Food Chem. 153:35–43. doi: 10.1016/j.foodchem.2013.12.048.
  • Haderbache L, Mouna B, Arezki M. 2013. Ziziphus Lotus and Euphorbia bupleuroides Algerian honeys. World Appl Sci J. 24(11):1536–1543. doi: 10.5829/idosi.wasj.2013.24.11.7525.
  • Hamad GH, Hafez EE, Abdelmotilib NM, Abdel-Hmeed KM, Ali SH, Darwish AMG. 2020. Quality assessment, functional potentials, and safety evaluation of stored Egyptian honey as an environmental pollution bioindicator. Environ Toxicol Chem. 39(10):1894–1907. doi: 10.1002/etc.4811.
  • Harrer M, Cuijpers P, Furukawa T, Ebert DD. 2019. dmetar: Companion R package for the guide 'Doing meta-analysis in R'. R package version 0.1.0. URL http://dmetar.protectlab.org/.
  • Harrer M, Cuijpers P, Furukawa T, Ebert DD. 2021. Doing meta-analysis with R: a hands-on guide. Boca Raton (FL); London: Chapman & Hall/CRC Press.
  • Hassan A, Ghandour MAA, Ali AMM, Mahran HA. 2010. Evaluation of lead, cadmium and copper concentrations in bee honey and edible molasses. Am J Appl Sci. 7(3):315–322. doi: 10.3844/ajassp.2010.315.322.
  • Hassan ASM, Abd El Rahman TA, Eissa AA. 2015. Evaluation and comparison of some trace elements in bee honey from eleven countries. Egypt Sci J Pest. 1(2):39–44.
  • Hussein MH. 2000. A review of beekeeping in Arab countries. Bee World. 81(2):56–71. doi: 10.1080/0005772X.2000.11099473.
  • Imtara H, Elamine Y, Lyoussi B. 2018. Physicochemical characterization and antioxidant activity of Palestinian honey samples. Food Sci Nutr. 6(8):2056–2065. doi: 10.1002/fsn3.754.
  • [JECFA] Joint FAO/WHO Expert Committee on Food Additives. 2011. Safety evaluation of certain food additives and contaminants. WHO Food Additives Series. 64:381–497. https://www.who.int/publications/i/item/9789241660648.
  • Karabagias IK, Louppis AP, Karabournioti S, Kontakos S, Papastephanou C, Kontominas MG. 2017. Characterization and classification of commercial thyme honeys produced in specific Mediterranean countries according to geographical origin, using physicochemical parameter values and mineral content in combination with chemometrics. Eur Food Res Technol. 243(5):889–900. doi: 10.1007/s00217-016-2803-0.
  • Karabagias IK, Louppis AP, Kontakos S, Drouza C, Papastephanou C. 2018. Characterization and botanical differentiation of monofloral and multifloral honeys produced in Cyprus, Greece, and Egypt using physicochemical parameter analysis and mineral content in conjunction with supervised statistical techniques. J Anal Methods Chem. 2018:e7698251. doi: 10.1155/2018/7698251.
  • Khalifa MH, Aly GF, Abdelhameed KMA. 2020. Heavy metal accumulation and the possible correlation with acetylcholinesterase levels in honey bees from polluted areas of Alexandria, Egypt. Afr Entomol. 28(2):385–393. doi: 10.4001/003.028.0385.
  • Khuder A, Ahmad M, Hasan R, Saour G. 2010. Improvement of X-ray fluorescence sensitivity by dry ashing method for elemental analysis of bee honey. Microchem J. 95(2):152–157. doi: 10.1016/j.microc.2009.11.001.
  • Kim J, Lee Y, Yang M. 2014. Environmental exposure to lead (Pb) and variations in its susceptibility. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 32(2):159–185. doi: 10.1080/10590501.2014.907461.
  • Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Delbac F, Pouliquen H. 2012. Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut. 170:254–259. doi: 10.1016/j.envpol.2012.07.012.22842054.
  • Laredj H, Waffa R, Sara M. 2017. Physico-chemical analysis and determining of toxic elements in honey produced in the region of Tiaret. Adv Environ Biol. 11(5):110–115.
  • Lee J-W, Choi H, Hwang U-K, Kang J-C, Kang YJ, Kim KI, Kim J-H. 2019. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: a review. Environ Toxicol Pharmacol. 68:101–108. doi: 10.1016/j.etap.2019.03.010.
  • Loutfy N, Mentler A, Shoeab M, Ahmed MT, Füerhacker M. 2012. Analysis and exposure assessment of some heavy metals in foodstuffs from Ismailia city, Egypt. Toxicol Environ Chem. 94(1):78–90. doi: 10.1080/02772248.2011.638445.
  • Malavolti M, Fairweather-Tait SJ, Malagoli C, Vescovi L, Vinceti M, Filippini T. 2020. Lead exposure in an Italian population: food content, dietary intake and risk assessment. Food Res Int. 137:109370. doi: 10.1016/j.foodres.2020.109370.
  • Malhat F, Kasiotis KM, Hassanin AS, Shokr SA. 2019. An MIP-AES study of heavy metals in Egyptian honey: toxicity assessment and potential health hazards to consumers. J Elem. 24(2/2019):473–488. doi: 10.5601/jelem.2018.23.4.1685.
  • Massous A, Ouchbani T, Lo Turco V, Litrenta F, Nava V, Albergamo A, Potortì AG, Di Bella G. 2023. Monitoring Moroccan honeys: physicochemical properties and contamination pattern. Foods. 12(5):969. doi: 10.3390/foods12050969.
  • Mehdi R, Zrira S, Vadalà R, Nava V, Condurso C, Cicero N, Costa R. 2023. A preliminary investigation of special types of honey marketed in Morocco. JETA. 1(1):1–20. doi: 10.3390/jeta1010001.
  • Mehdi Y, Mutlaq A, Al-Balas Q, Azzi E, Bouadjela L, Taïbi N, Dakiche H, Touati L, Boudriche L, Bachari K. 2018. Physicochemical characterization and determination of chloramphenicol residues and heavy metals in Algerian honeys. Environ Sci Pollut Res Int. 25(33):33322–33333. doi: 10.1007/s11356-018-3241-2.
  • Mohammed F, Abdulwali N, Guillaume D, Bchitou R. 2018. Element content of Yemeni honeys as a long-time marker to ascertain honey botanical origin and quality. LWT. 88:43–46. doi: 10.1016/j.lwt.2017.09.040.
  • Moujanni A, Partida L, Essamadi AK, Hernanz D, Heredia FJ, Terrab A. 2018. Physicochemical characterization of unique unifloral honey: Euphorbia resinifera. CYTA J Food. 16(1):27–35. doi: 10.1080/19476337.2017.1333529.
  • Moujanni A, Terrab A, Eddoha R, Nasser B, Benbachir M, Tannaoui M, Zouaoui A, Essamadi AK. 2017. Quantification of heavy metals and pesticides residues in labeled Moroccan Euphorbia resinifera honey from Tadla-Azilal. J Mat Environ Sci. 8(5):1826–1836.
  • Nageh N, Salman AM, Abu-Zaid AK. 2020. The bee honey as an indicator to environmental pollutions by heavy metals in south Egypt. J Sohag Agrisci. 5(1):80–95. doi: 10.21608/jsasj.2020.229246.
  • Obeng-Gyasi E. 2019. Sources of lead exposure in various countries. Rev Environ Health. 34(1):25–34. doi: 10.1515/reveh-2018-0037.
  • Omran NS, Omar MOM, Hussein MH, Mm A-A. 2019. Heavy metals concentrations in bee products collected from contaminated and non-contaminated areas from upper Egypt governorates. Int J Res Stud Biosci. 7(2):24–31. doi: 10.20431/2349-0365.0702002.
  • Osman KA, Al-Doghairi MA, Al-Otaibi ND. 2021. Spatial distribution of environmental pollutants in natural honeys collected from some regions of Saudi Arabia. J Apic Res. 60(1):188–197. doi: 10.1080/00218839.2020.1727658.
  • Osman KA, Al-Doghairi MA, Al-Rehiayani S, Helal MID. 2007. Mineral contents and physicochemical properties of natural honey produced in Al-Qassim region, Saudi Arabia. J Food Agric Environ. 5:142–146. doi: 10.4197/met.18-2.1.
  • Othman ZAA. 2010. Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules. 15(10):7482–7497. doi: 10.3390/molecules15107482.
  • Ragab MAA, El-Yazbi AF, El-Hawiet A. 2020. Fast economic electrochemical assay for vitamins and heavy mineral components in honey samples of different botanical origin. Microchem J. 155:104770. doi: 10.1016/j.microc.2020.104770.
  • Rahmani J, Alipour S, Miri A, Fakhri Y, Riahi S-M, Keramati H, Moradi M, Amanidaz N, Pouya RH, Bahmani Z, et al. 2018. The prevalence of aflatoxin M1 in milk of Middle East region: a systematic review, meta-analysis and probabilistic health risk assessment. Food Chem Toxicol. 118:653–666. doi: 10.1016/j.fct.2018.06.016.
  • Rashed MN, El-Haty MTA, Mohamed SM. 2009. Bee honey as environmental indicator for pollution with heavy metals. Toxicol Environ Chem. 91(3):389–403. doi: 10.1080/02772240802294870.
  • RStudio Team 2020. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/
  • Ru Q-M, Feng Q, He J-Z. 2013. Risk assessment of heavy metals in honey consumed in Zhejiang province, southeastern China. Food Chem Toxicol. 53:256–262. doi: 10.1016/j.fct.2012.12.015.
  • Sahinler N, Gül A, Akyol E, Öksuz A. 2009. Heavy metals, trace elements and biochemical composition of different honey produce in Turkey. Asian J Chem. 21(3):1887–1896.
  • Salama AS, Etorki AM, Awad MH. 2019. Determination of physicochemical properties and toxic heavy metals levels in honey samples from west of Libya. JACS. 5(1):618–620. doi: 10.30799/jacs.207.19050104.
  • Šedík P, Pocol CB, Horská E, Fiore M. 2019. Honey: food or medicine? A comparative study between Slovakia and Romania. BFJ. 121(6):1281–1297. doi: 10.1108/BFJ-12-2018-0813.
  • Sherif ASF, Ramadan H, Mohanned Taksira D, Gomaa MBM. 2019. Estimated of heavy metals pollution by honey bee as bio-indicator. Egypt J Plant Prot Res Inst. 2(4):770–779.
  • Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. 2021. Environmental and health hazards of military metal pollution. Environ Res. 201:111568. doi: 10.1016/j.envres.2021.111568.
  • Smith KE, Weis D, Scott SR, Berg CJ, Segal Y, Claeys P. 2021. Regional and global perspectives of honey as a record of lead in the environment. Environ Res. 195:110800. doi: 10.1016/j.envres.2021.110800.
  • Sy MM, Feinberg M, Verger P, Barré T, Clémençon S, Crépet A. 2013. New approach for the assessment of cluster diets. Food Chem Toxicol. 52:180–187. doi: 10.1016/j.fct.2012.11.005.
  • Tahboub YR, Al-Ghzawi AA-MA, Al-Zayafdneh SS, AlGhotani MS. 2022. Levels of trace elements and rare earth elements in honey from Jordan. Environ Sci Pollut Res Int. 29(8):11469–11480. doi: 10.1007/s11356-021-16460-3.
  • Tomczyk M, Zaguła G, Kaczmarski M, Puchalski C, Dżugan M. 2023. The negligible effect of toxic metal accumulation in the flowers of melliferous plants on the mineral composition of monofloral honeys. Agric. 13(2):273. doi: 10.3390/agriculture13020273.
  • [WHO] World Health Organization. 2003. GEMS/Food regional diets - regional per capita consumption of raw and semi-processed agricultural commodities. Geneva, Switzerland: Food Safety Department, WHO Health Organization.
  • [WHO] World Health Organization. 2017. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. Geneva, Switzerland: Food Safety Department, WHO Health Organization.
  • [WHO] World Health Organization. 2023. Preventing disease through healthy environments - Exposure to lead: a major public health concern. 2nd ed. Geneva, Switzerland: Food Safety Department, WHO Health Organization.
  • Yaiche Achour H, Khali M. 2014. Composition physicochimique des miels algériens. Détermination des éléments traces et des éléments potentiellement toxiques. Afr Sci Rev Int Sci Technol. 10(2):127–136. doi: 10.4314/afsci.v10i2.
  • Zergui A, Boudalia S, Joseph ML. 2023. Heavy metals in honey and poultry eggs as indicators of environmental pollution and potential risks to human health. J Food Compos Anal. 119:105255. doi: 10.1016/j.jfca.2023.105255.