124
Views
15
CrossRef citations to date
0
Altmetric
Articles

Iron shavings supported biological denitrification in sequencing batch reactor

, &
Pages 95-105 | Received 14 Aug 2011, Accepted 06 May 2012, Published online: 21 Nov 2012

References

  • World Health Organization . 2004 . Guidelines for Drinking-Water Quality, vol. 1 , Geneva : World Health Organization .
  • Bhatnagar , A. and Sillanpaa , M. 2011 . A review of emerging adsorbents for nitrate removal from water . Chem. Eng. J. , 168 : 493 – 504 .
  • Schoeman , J.J. 2009 . Nitrate-nitrogen removal with small-scale reverse osmosis, electrodialysis and ion-exchange units in rural areas . Water SA , 35 : 721 – 728 .
  • Della Rocca , C. , Belgiorno , V. and Meric , S. 2006 . An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water . Process Biochem. , 41 : 1022 – 1028 .
  • Della Rocca , C. , Belgiorno , V. and Meric , S. 2007 . Overview of in-situ applicable nitrate removal processes . Desalination , 204 : 46 – 62 .
  • Nemati , M. , An , S.J. and Stone , H. 2011 . Biological removal of nitrate by an oil reservoir culture capable of autotrophic and heterotrophic activities: Kinetic evaluation and modeling of heterotrophic process . J. Hazard Mater. , 190 : 686 – 693 .
  • Munawar , M. , Fitzpatrick , M. , Niblock , H. and Lorimer , J. 2011 . The relative importance of autotrophic and heterotrophic microbial communities in the planktonic food web of the Bay of Quinte, Lake Ontario 2000–2007 . Aquat. Ecosyst. Health , 14 : 21 – 32 .
  • Smets , B.F. , Lackner , S. and Terada , A. 2008 . Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study . Water Res , 42 : 1102 – 1112 .
  • Lee , H.W. , Park , Y.K. , Choi , E. and Lee , J.W. 2008 . Bacterial community and biological nitrate removal: Comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage . J. Microbiol. Biotechn. , 18 : 1826 – 1835 .
  • Della Rocca , C. , Belgiorno , V. and Meric , S. 2007 . Heterotrophic/autotrophic denitrification (HAD) of drinking water: Prospective use for permeable reactive barrier . Desalination , 210 : 194 – 204 .
  • Rezania , B. , Oleszkiewicz , J.A. and Cicek , N. 2007 . Hydrogen-dependent denitrification of water in an anaerobic submerged membrane bioreactor coupled with a novel hydrogen delivery system . Water Res , 41 : 1074 – 1080 .
  • Rezania , B. , Oleszkiewicz , J.A. and Cicek , N. 2006 . Hydrogen-driven denitrification of wastewater in an anaerobic submerged membrane bioreactor: Potential for water reuse . Water Sci. Technol. , 54 : 207 – 214 .
  • Rezania , B. , Oleszkiewicz , J.A. , Cicek , N. and Mo , H. 2005 . Hydrogen-dependent denitrification in an alternating anoxic-aerobic SBR membrane bioreactor . Water Sci. Technol. , 51 : 403 – 409 .
  • Kakuda , F. , Myoga , H. , Yang , M. and Magara , Y. 1994 . Several factors affecting the specific denitrification rate of hydrogen oxidizing denitrifiers . J. Jpn. Soc. Water Environ. , 17 : 669 – 675 .
  • Moon , H.S. , Shin , D. , Nam , K. and Kim , J.Y. 2010 . Distribution of the microbial community structure in sulfur-based autotrophic denitrification columns . J. Environ. Eng.-Asce. , 136 : 481 – 486 .
  • Wan , D.J. , Liu , H.J. , Qu , J.H. , Lei , P.J. , Mao , S.H. and Hou , Y.N. 2009 . Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification . Bioresource Technol. , 100 : 142 – 148 .
  • Liu , H.J. , Jiang , W. , Wan , D.J. and Qu , J.H. 2009 . Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water . J. Hazard Mater. , 169 : 23 – 28 .
  • Beech , W.B. and Sunner , J. 2004 . Biocorrosion: Towards understanding interactions between biofilms and metals . Curr. Opin. Biotech. , 15 : 181 – 186 .
  • Till , B.A. , Weathers , L.J. and Alvarez , P.J.J. 1998 . Fe(0)-supported autotrophic denitrification . Environ. Sci. Technol. , 32 : 634 – 639 .
  • Sunger , N. and Bose , P. 2009 . Autotrophic denitrification using hydrogen generated from metallic iron corrosion . Bioresource Technol. , 100 : 4077 – 4082 .
  • An , Y. , Li , T.L. , Jin , Z.H. , Dong , M.Y. and Li , Q.Q. 2010 . Nitrate degradation and kinetic analysis of the denitrification system composed of iron nanoparticles and hydrogenotrophic bacteria . Desalination , 252 : 71 – 74 .
  • Rittmann , B.E. and McCarty , P.L. 2001 . Environmental Biotechnology : Principles and Applications , Boston , MA : McGraw-Hill . pp. xiv, 754
  • Tang , Y.N. , Zhou , C. , Ziv-El , M. and Rittmann , B.E. 2011 . A pH-control model for heterotrophic and hydrogen-based autotrophic denitrification . Water Res , 45 : 232 – 240 .
  • De Windt , W. , Boon , N. , Siciliano , S.D. and Verstraete , W. 2003 . Cell density related H-2 consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by Shewanella oneidensis MR-1 . Environ. Microbiol. , 5 : 1192 – 1202 .
  • Shin , K.H. and Cha , D.K. 2008 . Microbial reduction of nitrate in the presence of nanoscale zero-valent iron . Chemosphere , 72 : 257 – 262 .
  • Biswas , S. and Bose , P. 2005 . Zero-valent iron-assisted autotrophic denitrification . J. Environ. Eng.-Asce. , 131 : 1212 – 1220 .
  • Lavania , A. and Bose , P. 2006 . Effect of metallic iron concentration on end-product distribution during metallic iron-assisted autotrophic denitrification . J. Environ. Eng.-Asce. , 132 : 994 – 1000 .
  • Schadler , S. , Burkhardt , C. , Hegler , F. , Straub , K.L. , Miot , J. , Benzerara , K. and Kappler , A. 2009 . Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria . Geomicrobiol J. , 26 : 93 – 103 .
  • Kalyanaraman , R. , Yoo , S. , Krupashankara , M.S. , Sudarshan , T.S. and Dowding , R.J. 1998 . Synthesis and consolidation of iron nanopowders . Nanostruct. Mater. , 10 : 1379 – 1392 .
  • Ma , L.M. and Zhang , W.X. 2008 . Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron . Environ. Sci. Technol. , 42 : 5384 – 5389 .
  • Franson , MAH , American Public Health Association , American Water Works Association and Water Environment Federation . 1998 . Standard methods for the examination of water and wastewater , Washington , DC : The Associations .
  • Schwertmann , U. 2003 . The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses , Weinheim : Wiley-VCH . pp. xxxix, 664
  • Straub , K.L. , Benz , M. , Schink , B. and Widdel , F. 1996 . Anaerobic, nitrate-dependent microbial oxidation of ferrous iron . Appl. Environ. Microb. , 62 : 1458 – 1460 .
  • van der Maas , P. , Harmsen , L. , Weelink , S. , Klapwijk , B. and Lens , P. 2004 . Denitrification in aqueous FeEDTA solutions . J. Chem. Technol. Biot. , 79 : 835 – 841 .
  • C. Della Rocca, V. Belgiorno, S. Meric, Innovative heterotrophic/autotrophic denitrification (HAD) of drinking water: Effect of ZVI on nitrate removal, in: Proceedings of International Conference on Environmental Science, A265–A270, 2005, 1721.
  • Dinh , H.T. , Kuever , J. , Mussmann , M. , Hassel , A.W. , Stratmann , M. and Widdel , F. 2004 . Iron corrosion by novel anaerobic microorganisms . Nature , 427 : 829 – 832 .
  • Ginner , J.L. , Alvarez , P.J.J. , Smith , S.L. and Scherer , M.M. 2004 . Nitrate and nitrite reduction by Fe-0: Influence of mass transport, temperature, and denitrifying microbes . Environ. Eng. Sci. , 21 : 219 – 229 .
  • Su , C.M. and Puls , R.W. 2007 . Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers . Chemosphere , 67 : 1653 – 1662 .
  • Choi , J.H. , Shin , W.S. , Choi , S.J. and Kim , Y.H. 2009 . Reductive denitrification using zero-valent iron and bimetallic iron . Environ. Technol. , 30 : 939 – 946 .
  • Schaefer , C.E. , Fuller , M.E. , Condee , C.W. , Lowey , J.M. and Hatzinger , P.B. 2007 . Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater . J. Contam. Hydrol. , 89 : 231 – 250 .
  • Cheng , I.F. , Muftikian , R. , Fernando , Q. and Korte , N. 1997 . Reduction of nitrate to ammonia by zero-valent iron . Abstr. Pap. Am. Chem. S. , 213 : 179-ENVR
  • Lee , K.C. and Rittmann , B.E. 2003 . Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor . Water Res , 37 : 1551 – 1556 .
  • Cwiertny , D.M. , Bransfield , S.J. and Roberts , A.L. 2007 . Influence of the oxidizing species on the reactivity of iron-based bimetallic reductants . Environ. Sci. Technol , 41 : 3734 – 3740 .
  • Constantinou , C.L. , Costa , C.N. and Efstathiou , A.M. 2007 . The remarkable effect of oxygen on the N-2 selectivity of water catalytic denitrification by hydrogen . Environ. Sci. Technol , 41 : 950 – 956 .
  • Shao , M.F. , Zhang , T. , Fang , H.H.P. and Li , X.D. 2011 . The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment . Chemosphere , 83 : 1 – 6 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.