207
Views
11
CrossRef citations to date
0
Altmetric
Articles

Humic acid characteristics and effects on the reactivity of nano-scale zero-valent iron particles during nitrate reduction

, , &
Pages 147-156 | Received 04 Oct 2011, Accepted 09 May 2012, Published online: 21 Nov 2012

References

  • Kapoor , A. and Viraraghavan , T. 1997 . Nitrate removal from drinking water-review . J. Environ. Eng. (ASCE) , 123 : 371 – 380 .
  • Liou , Y.H. , Lo , S.-L. , Lin , C.-J. , Kuan , W.H. and Weng , S.C. 2005 . Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles . J. Hazard. Mater. , 127 : 102 – 110 .
  • Yang , G.C.C. and Lee , H.-L. 2005 . Chemical reduction of nitrate by nanosized iron: Kinetics and pathways . Water Res. , 39 : 884 – 894 .
  • Lee , Y.-C. , Kim , C.-W. , Lee , J.-Y. , Shin , H.-J. and Yang , J.-W. 2009 . Characterization of nanoscale zero valent iron modified by nonionic surfactant for trichloroethylene removal in the presence of humic acid: A research note . Desalin. Water Treat. , 10 : 33 – 38 .
  • Sharma , Y.C. , Srivastava , V. , Singh , V.K. , Kaul , S.N. and Weng , C.H. 2009 . Nano-adsorbents for the removal of metallic pollutants from water and wastewater . Environ. Technol. , 30 : 583 – 609 .
  • Zhang , Y. , Lia , Y. and Zheng , X. 2011 . Removal of atrazine by nanoscale zero valent iron supported on organobentonite . Sci. Tot. Environ. , 409 : 625 – 630 .
  • Liou , Y.H. , Lo , S.-L. , Kuan , W.H. , Lin , C.-J. and Weng , S.C. 2006 . Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate . Water Res. , 40 : 2485 – 2492 .
  • Stevenson , F.J. 1982 . Humus Chemistry: Genesis, Composition, Reactions , New York , NY : John Wiley and Sons .
  • Van Geluwe , S. , Braeken , L. , Vinckier , C. and Van der Bruggen , B. 2009 . Ozonation and perozonation of humic acids in nanofiltration concentrates . Desalin. Water Treat. , 6 : 217 – 221 .
  • Chin , Y.-P. , Alken , G. and O'Loughlin , E. 1994 . Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances . Environ. Sci. Technol. , 28 : 1853 – 1858 .
  • Nakashima , K. , Xing , S. , Gong , Y. and Miyajima , T. 2008 . Characterization of humic acids by two-dimensional correlation fluorescence spectroscopy . J. Mol. Struc. , 883–884 : 155 – 159 .
  • Chaplin , B.P. , Roundy , E. , Guy , K.A. , Shapley , J.R. and Werth , C.J. 2006 . Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst . Environ. Sci. Technol. , 40 : 3075 – 3081 .
  • Marugáán , J. , van Grieken , R. and Pablos , C. 2010 . Kinetics and influence of water composition on photocatalytic disinfection and photocatalytic oxidation of pollutants . Environ. Technol. , 31 : 1435 – 1440 .
  • Chen , J. , Xiu , Z. , Lowry , G.V. and Alvarez , P.J.J. 2011 . Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron . Water Res. , 45 : 1995 – 2001 .
  • Doong , R.-A. and Lai , Y.-J. 2005 . Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid . Water Res. , 39 : 2309 – 2318 .
  • Feng , J. , Zhu , B.-W. and Lim , T.-T. 2008 . Reduction of chlorinated methanes with nano-scale Fe particles: Effects of amphiphiles on the dechlorination reaction and two-parameter regression for kinetic prediction . Chemosphere , 73 : 1817 – 1823 .
  • Hur , J. and Schlautman , M.A. 2003 . Using selected operational descriptors to examine the heterogeneity within a bulk humic substance . Environ. Sci. Technol. , 5 : 880 – 887 .
  • Westerhoff , P. , Moon , H. , Minakata , D. and Crittenden , J. 2009 . Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities . Water Res. , 43 : 3992 – 3998 .
  • Brum , M.C. and Oliveira , J.F. 2007 . Removal of humic acid from water by precipitate flotation using cationic surfactants . Miner. Eng. , 20 : 945 – 949 .
  • American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, 20th ed., APHA, AWWA, WPCF, Washington, DC, 1998.
  • Świetlik , J. and Sikorska , E. 2004 . Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone . Water Res. , 38 : 3791 – 3799 .
  • Zhang , T. , Lu , J. , Ma , J. and Qiang , Z. 2008 . Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation . Chemosphere , 71 : 911 – 921 .
  • Antunes , M.C.G. , Pereira , C.C.C. and da Silva , J.C.G.E. 2007 . MCR of the quenching of the EEM of fluorescence of dissolved organic matter by metal ions . Anal. Chim. Acta , 595 : 9 – 18 .
  • Hur , J. and Schlautman , M.A. 2006 . Evaluating spectroscopic and chromatographic techniques to resolve dissolved organic matter via end member mixing analysis . Chemosphere , 63 : 387 – 402 .
  • Hwang , Y.H. , Kim , D.G. , Ahn , Y.T. , Moon , C.M. and Shin , H.S. 2010 . Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics . Water Sci. Technol. , 61 : 705 – 712 .
  • Schwarzenbach , R.P. , Stierli , R. , Lanz , K. and Zeyer , J. 1994 . Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution . Environ. Sci. Technol. , 24 : 1566 – 1574 .
  • Liu , T. , Tsang , D.C. and Lo , I.M. 2008 . Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: Iron dissolution and humic acid adsorption . Environ. Sci. Technol. , 42 : 2092 – 2098 .
  • Zawaideh , L.L. and Zhang , T.C. 1998 . The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems . Water Sci. Technol. , 38 : 107 – 115 .
  • Jung , A.-V. , Chanudet , V. , Ghanbaja , J. , Lartiges , B.S. and Bersillon , J.-L. 2005 . Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation . Water Res. , 39 : 3849 – 3862 .
  • Lin , K.-S. , Chang , N.-B. and Chuang , T.-D. 2008 . Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater . Sci. Technol. Adv. Mater. , 169 : 23 – 31 .
  • Romkens , P.F.A.M. and Dolfing , J. 1998 . Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples . Environ. Sci. Technol. , 32 : 363 – 369 .
  • Stumm , W. 1997 . Reactivity at the mineral-water interface: Dissolution and inhibition . Colloid Surf. A , 120 : 143 – 166 .
  • Uyguner , C.S. and Bekbolet , M. 2005 . Evaluation of humic acid photocatalytic degradation by UV–vis and fluorescence spectroscopy . Catal. Today , 101 : 267 – 274 .
  • Giasuddin , A.M. , Kanel , S.R. and Choi , H.C. 2007 . Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal . Environ. Sci. Technol. , 41 : 2022 – 2027 .
  • Šmejkalovă , D. , Conte , P. and Piccolo , A. 2007 . Structural characterization of isomeric dimers from the oxidative oligomerization of catechol with a biomimetic catalyst . Biomacromolecules , 8 : 737 – 743 .
  • Miano , T.M. and Senesi , N. 1992 . Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry . Sci. Tot. Environ. , 117 : 41 – 51 .
  • Hudson , N. , Baker , A. and Reynolds , D. 2007 . Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-A review . River Res. Appl. , 23 : 631 – 649 .
  • O'Loughlin , E.J. and Chin , Y.-P. 2004 . Quantification and characterization of dissolved organic carbon and iron in sedimentary porewater from Green Bay, WI, USA . Biogeochemistry , 71 : 371 – 386 .
  • Šmejkalová , D. and Piccolo , A. 2006 . Rates of oxidative coupling of humic phenolic monomers catalyzed by a biomimetic iron-porphyrin . Environ. Sci. Technol. , 40 : 1644 – 1649 .
  • Hardie , A.G. , Dynes , J.J. , Kozak , L.M. and Huang , P.M. 2007 . Influence of polyphenols on the integrated polyphenol-Maillard reaction humification pathway as catalyzed by birnessite . AES , 1 : 91 – 110 .
  • Liu , Y. , Majetich , S.A. , Tilton , R.D. , Sholl , D.S. and Lowry , G.V. 2005 . TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties . Environ. Sci. Technol. , 39 : 1338 – 1345 .
  • Tsang , D.C.W. , Graham , N.J.D. and Lo , I.M.C. 2009 . Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal . Chemosphere , 75 : 1338 – 1343 .
  • Geluwe , S.V. , Braeken , L. , Vinckier , C. and Van der Bruggen , B. 2009 . Ozonation and perozonation of humic acids in nanofiltration concentrates . Desalin. Water Treat. , 6 : 217 – 221 .
  • Haberkamp , J. , Ernst , M. , Paar , H. , Pallischeck , D. , Amy , G. and Jekel , M. 2011 . Impact of organic fractions identified by SEC and fluorescence EEM on the hydraulic reversibility of ultrafiltration membrane fouling by secondary effluents . Desalin. Water Treat. , 29 : 73 – 86 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.