524
Views
23
CrossRef citations to date
0
Altmetric
Articles

Application of carbon nano-materials in desalination processes

&
Pages 627-636 | Received 29 Feb 2012, Accepted 16 Aug 2012, Published online: 13 Sep 2012

References

  • Gilau , A.M. and Small , M.J. 2008 . Designing cost-effective seawater reverse osmosis system under optimal energy options . Renewable Energy , 33 ( 4 ) : 617 – 630 .
  • Service , R.F. 2006 . Desalination freshens up . Science , 313 ( 5790 ) : 1088 – 1090 .
  • Elimelech , M. and Phillip , W.A. 2011 . The future of seawater desalination: Energy, technology, and the environment . Science , 333 ( 6043 ) : 712 – 717 .
  • Shannon , M.A. 2008 . Science and technology for water purification in the coming decades . Nature , 452 ( 7185 ) : 301 – 310 .
  • Schiermeier , Q. 2008 . Water: Purification with a pinch of salt . Nature , 452 ( 7185 ) : 260 – 261 .
  • Fritzmann , C. 2007 . State-of-the-art of reverse osmosis desalination . Desalination , 216 ( 1–3 ) : 1 – 76 .
  • García-Rodríguez , L. 2003 . Renewable energy applications in desalination: State of the art . Sol. Energy , 75 ( 5 ) : 381 – 393 .
  • Miller , J.E. 2003 . Review of Water Resources and Desalination Technologies , Albuquerque : Sandia National Laboratories . New Mexico 87185 and Livermore, California 94550
  • He , T.X. and Yan , L.J. 2009 . Application of alternative energy integration technology in seawater desalination . Desalination , 249 ( 1 ) : 104 – 108 .
  • [cited 2012 Feb 29, 2012]; Available from: http://desaldata.com/.
  • C.o.A.D. Technology, and N.R. Council, Desalination: A National Perspective: The National Academies Press, 2008.
  • Potts , D.E. , Ahlert , R.C. and Wang , S.S. 1981 . A critical review of fouling of reverse osmosis membranes . Desalination , 36 ( 3 ) : 235 – 264 .
  • Ajayan , P.M. 1999 . Nanotubes from carbon . Chem. Rev. , 99 ( 7 ) : 1787 – 1800 .
  • Baughman , R.H. , Zakhidov , A.A. and de Heer , W.A. 2002 . Carbon nanotubes–the route toward applications . Science , 297 ( 5582 ) : 787 – 792 .
  • Mauter , M.S. and Elimelech , M. 2008 . Environmental applications of carbon-based nanomaterials . Environ. Sci. Technol. , 42 ( 16 ) : 5843 – 5859 .
  • Vandezande , P. , Gevers , L.E.M. and Vankelecom , I.F.J. 2008 . Solvent resistant nanofiltration: Separating on a molecular level . Chem. Soc. Rev. , 37 ( 2 ) : 365 – 405 .
  • Han , J. , Fu , J. and Schoch , R.B. 2007 . Molecular sieving using nanofilters: Past, present and future . Lab on a Chip—Miniaturisation for Chem. Biol. , 8 ( 1 ) : 23 – 33 .
  • E. Grunwald, Thermodynamics of Molecular Species, John Wiley, 1997.
  • Song , C. and Corry , B. 2009 . Intrinsic ion selectivity of narrow hydrophobic pores . J. Phys. Chem. B , 113 ( 21 ) : 7642 – 7649 .
  • Li , L. 2004 . Desalination by reverse osmosis using MFI zeolite membranes . J. Membr. Sci. , 243 ( 1–2 ) : 401 – 404 .
  • Li , H. 2008 . Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes . Water Res. , 42 ( 20 ) : 4923 – 4928 .
  • F. Fornasiero et al., Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. of Sci. 2008.
  • Holt , J.K. 2006 . Fast mass transport through sub-2-nanometer carbon nanotubes . Science , 312 ( 5776 ) : 1034 – 1037 .
  • Bai , J. 2010 . Graphene nanomesh . Nat. Nano , 5 ( 3 ) : 190 – 194 .
  • Iijima , S. 1991 . Helical microtubules of graphitic carbon . Nature , 354 ( 6348 ) : 56 – 58 .
  • Dresselhaus , M.S. , Dresselhaus , G. and Saito , R. 1995 . Physics of carbon nanotubes . Carbon , 33 ( 7 ) : 883 – 891 .
  • Cheung , C.L. 2002 . Diameter-controlled synthesis of carbon nanotubes . J. Phys. Chem. B , 106 ( 10 ) : 2429 – 2433 .
  • Hummer , G. , Rasaiah , J.C. and Noworyta , J.P. 2001 . Water conduction through the hydrophobic channel of a carbon nanotube . Nature , 414 ( 6860 ) : 188 – 190 .
  • Kolesnikov , A.I. 2004 . Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement . Phys. Rev. Lett. , 93 ( 3 ) : 035503 – 35503 .
  • Joseph , S. and Aluru , N.R. 2008 . Why are carbon nanotubes fast transporters of water? . Nano Lett. , 8 ( 2 ) : 452 – 458 .
  • Falk , K. 2010 . Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction . Nano Lett. , 10 ( 10 ) : 4067 – 4073 .
  • Majumder , M. 2005 . Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes . Nature , 438 ( 7064 ) : 44 – 44 .
  • Geim , A.K. 2009 . Graphene: Status and prospects . Science , 324 ( 5934 ) : 1530 – 1534 .
  • Lee , C. 2008 . Measurement of the elastic properties and intrinsic strength of monolayer graphene . Science , 321 ( 5887 ) : 385 – 388 .
  • Bunch , J.S. 2008 . Impermeable atomic membranes from graphene sheets . Nano Lett. , 8 ( 8 ) : 2458 – 2462 .
  • Bae , S. 2010 . Roll-to-roll production of 30-inch graphene films for transparent electrodes . Nat. Nano , 5 ( 8 ) : 574 – 578 .
  • J.H. Chen et al., Defect scattering in graphene, Phys. Rev. Lett. 102(23) (2009).
  • Zhang , J. 2003 . Effect of chemical oxidation on the structure of single-walled carbon nanotubes . J. Phys. Chem. B , 107 ( 16 ) : 3712 – 3718 .
  • Hashimoto , A. 2004 . Direct evidence for atomic defects in graphene layers . Nature , 430 ( 7002 ) : 870 – 873 .
  • Pomoell , J.A.V. 2004 . Ion ranges and irradiation-induced defects in multiwalled carbon nanotubes . J. Appl. Phys. , 96 ( 5 ) : 2864 – 2871 .
  • Wei , D. 2009 . Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties . Nano Lett. , 9 ( 5 ) : 1752 – 1758 .
  • Suk , M.E. and Aluru , N.R. 2010 . Water transport through ultrathin graphene . J. Phys. Chem. Lett. , 1 ( 10 ) : 1590 – 1594 .
  • Sint , K. , Wang , B. and Král , P. 2009 . Selective ion passage through functionalized graphene nanopores . JACS , 131 ( 27 ) : 9600 JACS 130 (2008) 16448–16449
  • Garaj , S. 2010 . Graphene as a subnanometre trans-electrode membrane . Nature , 467 ( 7312 ) : 190 – 193 .
  • Anderson , M.A. , Cudero , A.L. and Palma , J. 2010 . Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? . Electrochim. Acta , 55 ( 12 ) : 3845 – 3856 .
  • Yoram , O. 2008 . Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review) . Desalination , 228 ( 1–3 ) : 10 – 29 .
  • Capacitive Deionization. [cited 2012; Capacitive Deionization]. Available from: http://www.tda.com/Research/capac_deion.htm
  • Bazant , M.Z. , Thornton , K. and Ajdari , A. 2004 . Diffuse-charge dynamics in electrochemical systems . Phys. Rev. E , 70 ( 2 ) : 021506
  • Bazant , M.Z. 2009 . Nonlinear electrokinetics at large voltages . New J. Phys. , 11 ( 7 ) : 075016
  • M.S. Kilic, M.Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E—Stat. Nonlinear—Soft Matter Phys. 75(2) (2007).
  • M.S. Kilic, M.Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E—Stat. Nonlinear—Soft Matter Phys. 75(2) (2007).
  • P.M. Biesheuvel, M.Z. Bazant, Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 81(3) (2010).
  • Biesheuvel , P.M. , Van Limpt , B. and Van Der Wal , A. 2009 . Dynamic adsorption/desorption process model for capacitive deionization . J. Phys. Chem. C , 113 ( 14 ) : 5636 – 5640 .
  • Gamby , J. 2001 . Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors . J. Power Sources , 101 ( 1 ) : 109 – 116 .
  • Avraham , E. 2009 . Limitations of charge efficiency in capacitive deionization: II. on the behavior of CDI cells comprising two activated carbon electrodes . J. Electrochem. Soc. , 156 ( 10 ) : 157 – 162 .
  • Zou , L. , Morris , G. and Qi , D. 2008 . Using activated carbon electrode in electrosorptive deionisation of brackish water . Desalination , 225 ( 1–3 ) : 329 – 340 .
  • Park , K.K. 2007 . Development of a carbon sheet electrode for electrosorption desalination . Desalination , 206 ( 1–3 ) : 86 – 91 .
  • Lee , J.B. 2009 . Desalination performance of a carbon-based composite electrode . Desalination , 237 ( 1–3 ) : 155 – 161 .
  • Lee , J.B. 2006 . Desalination of a thermal power plant wastewater by membrane capacitive deionization . Desalination , 196 ( 1–3 ) : 125 – 134 .
  • Ayranci , E. and Duman , O. 2005 . Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth . J. Hazard. Mater. , 124 ( 1–3 ) : 125 – 132 .
  • Oh , H.J. 2006 . Nanoporous activated carbon cloth for capacitive deionization of aqueous solution . Thin Solid Films , 515 ( 1 ) : 220 – 225 .
  • Ryoo , M.W. , Kim , J.H. and Seo , G. 2003 . Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution . J. Colloid Interface Sci. , 264 ( 2 ) : 414 – 419 .
  • Ryoo , M.W. and Seo , G. 2003 . Improvement in capacitive deionization function of activated carbon cloth by titania modification . Water Res. , 37 ( 7 ) : 1527 – 1534 .
  • Ahn , H.J. 2007 . Nanostructured carbon cloth electrode for desalination from aqueous solutions . Mater. Sci. Eng. A , 448–451 : 841 – 845 .
  • Avraham , E. 2009 . Limitation of charge efficiency in capacitive deionization: I. on the behavior of single activated carbon . J. Electrochem. Soc. , 156 ( 6 ) : P95 – P99 .
  • Noked , M. 2009 . The rate-determining step of electroadsorption processes into nanoporous carbon electrodes related to water desalination . J. Phys. Chem. C , 113 ( 51 ) : 21319 – 21327 .
  • Farmer , J.C. 1996 . Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes . J. Appl. Electrochem. , 26 ( 10 ) : 1007 – 1018 .
  • Farmer , J.C. 1996 . Capacitive deionization of NaCI and NaNO3 solutions with carbon aerogel electrodes . J. Electrochem. Soc. , 143 ( 1 ) : 159 – 169 .
  • Pekala , R.W. 1998 . Carbon aerogels for electrochemical applications . J. Non-Cryst. Solids , 225 ( 1–3 ) : 74 – 80 .
  • J.C. Farmer et al., The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water, Low Level Waste Conference 1995, Orlando, FL.
  • X.Z. Wang et al., Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes. Appl. Phys. Lett. 89(5) (2006).
  • Wang , X.Z. 2006 . Electrosorption of NaCl solutions with carbon nanotubes and nanofibers composite film electrodes . Electrochem. Solid-State Lett. , 9 ( 9 ) : E23 – E26 .
  • Pan , L. 2009 . Electrosorption of anions with carbon nanotube and nanofibre composite film electrodes . Desalination , 244 ( 1–3 ) : 139 – 143 .
  • Li , L. 2009 . Ordered mesoporous carbons synthesized by a modified sol-gel process for electrosorptive removal of sodium chloride . Carbon , 47 ( 3 ) : 775 – 781 .
  • El-Bourawi , M.S. 2006 . A framework for better understanding membrane distillation separation process . J. Membr. Sci. , 285 ( 1–2 ) : 4 – 29 .
  • Lawson , K.W. and Lloyd , D.R. 1996 . Membrane distillation. II. Direct contact MD . J. Membr. Sci. , 120 ( 1 ) : 123 – 133 .
  • Alkhudhiri , A. , Darwish , N. and Hilal , N. 2012 . Membrane distillation: A comprehensive review . Desalination , 287 : 2 – 18 .
  • Dumée , L.F. 2010 . Characterization and evaluation of carbon nanotube Bucky-Paper membranes for direct contact membrane distillation . J. Membr. Sci. , 351 ( 1–2 ) : 36 – 43 .
  • Lawson , K.W. and Lloyd , D.R. 1997 . Membrane distillation . J. Membr. Sci. , 124 ( 1 ) : 1 – 25 .
  • Khayet , M. and Matsuura , T. 2001 . Preparation and characterization of polyvinylidene fluoride membranes for membrane distillation . Ind. Eng. Chem. Res. , 40 ( 24 ) : 5710 – 5718 .
  • Smolders , K. and Franken , A.C.M. 1989 . Terminology for membrane distillation . Desalination , 72 ( 3 ) : 249 – 262 .
  • D. Basmadjian, Mass Transfer: Principles and Applications, CRC Press, 2004. (ISBN: 0-8493r-r2238-1).
  • Muramatsu , H. 2005 . Pore structure and oxidation stability of double-walled carbon nanotube-derived bucky paper . Chem. Phys. Lett. , 414 ( 4–6 ) : 444 – 448 .
  • Boge , J. 2009 . The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers . J. Mater. Chem. , 19 ( 48 ) : 9131 – 9140 .
  • Dumée , L. 2011 . Enhanced durability and hydrophobicity of carbon nanotube bucky paper membranes in membrane distillation . J. Membr. Sci. , 376 ( 1–2 ) : 241 – 246 .
  • W. Zhu et al., Highly-efficient buckypaper paper-based electrodes for PEMFC. 2008.
  • L. Dumée, et al., The impact of hydrophobic coating on the performance of carbon nanotube bucky-paper membranes in membrane distillation, Desalination (2011).
  • Vohrer , U. 2007 . Plasma modification of carbon nanotubes and bucky papers . Plasma Processes Polym. , 4 ( SUPPL. 1 ) : S. 871 – S. 877 .
  • Gethard , K. , Sae-Khow , O. and Mitra , S. 2010 . Water desalination using carbon-nanotube-enhanced membrane distillation . ACS Appl. Mater. Interfaces , 3 ( 2 ) : 110 – 114 .
  • Jia , Y.-X. 2010 . Carbon nanotube: Possible candidate for forward osmosis . Sep. Purif. Technol. , 75 ( 1 ) : 55 – 60 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.