65
Views
10
CrossRef citations to date
0
Altmetric
Articles

Kinetic evaluation and modeling for batch degradation of 2-hydroxybiphenyl and 2,2′-dihydroxybiphenyl by Corynebacterium variabilis Sh42

, &
Pages 4719-4728 | Received 14 Sep 2012, Accepted 26 Oct 2012, Published online: 22 Nov 2012

References

  • Jaspers, M.M., Suske, W.A., Schmid, A., Goslings, D.A.M., Kohler, H.E., and Van Der Meer, J.R., 2000. HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates epression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1, J. Bacteriol. 182 (2) (2000), pp. 405–417.
  • J.W. Eckert, Control of postharvest diseases, in: M.R. Siegel, H.D. Sisler (Ed.), Antifungal Compounds, Marcel Dekker, New York, NY, 1977, vol. 1, pp. 269–352..
  • Nojiri, H., and Omori, T., 2002. Molecular bases of aerobic bacterial degradation of dioxins: Involvement of angular dioxygenation, Biosci. Biotechnol. Biochem. 66 (2002), pp. 2001–2016.
  • Furukawa, K., Tomizuka, N., and Kamibayashi, A., 1979. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls, Appl. Environ. Microbiol. 38 (1979), pp. 301–310.
  • R.K. Puri, Q.P. Ye, S. Kapila, W.R. Lower, V. Puri, Plant uptake and metabolism of polychlorinated biphenyls (PCBs), in: W. Wang, J.W. Gorsuch, J.S. Hughcs (Eds.), Plants for Environmental Studies, CRC Press, Boca Raton, FL. 1997, pp. 481–513..
  • Chroma, L., Moeder, M., Kucerova, P., Macek, T., and Mackova, M., 2003. Plant enzymes in metabolism of polychlorinated biphenyls, Fresen. Environ. Bull. 12 (2003), pp. 291–295.
  • Suske, W.A., Held, M., Schmid, A., Fleischmann, T., Wubbolts, M.G., and Kohler, H.P.E., 1997. Purification and characterization of 2-hydroxybiphenyl-3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1, J. Biol. Chem. 272 (39) (1997), pp. 24257–24265.
  • El-Gendy, N.Sh., Farahat, L.A., Moustafa, Y.M., Shaker, N., and El-Temtamy, S.A., 2006. Biodesulfurization of crude and diesel oil by Candida parapsilosis NSh45 isolated from Egyptian hydro-carbon polluted sea water, Biosci. Biotechnol. Res. Asia 3 (1) (2006), pp. 5–16.
  • Chen, H., Zhang, W.J., Cai, Y.B., Zhang, Y., and Li, W.C., 2008. Elucidation of 2- hydroxybiphenyl effect on dibenzothiophene desulfurization by Microbacterium sp. strain ZD-M2, Bioresour. Technol. 9 (2008), pp. 6928–6933.
  • Ardakani, M., Amisefat, A., Rasekh, B., Yazdiyan, F., Zargar, B., Zarei, M., and Najafzadeh, H., 2010. Biodesulfurization of dibenzothiophene by newly isolated, Stenotrophomonas maltophilia strain kho1, World Appl. Sci. J. 10 (3) (2010), pp. 272–278.
  • Amin, G.A., 2011. Integrated two-stage process for biodesulfurization of model oil by vertical rotating immobilized cell reactor with the bacterium Rodochoccus erythropolis, J. Petrol. Environ. Biotechnol. 2 (1) (2011), pp. 1–4.
  • Lee, M.K., Senius, J.D., and Grossman, M.J., 1995. Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene, Appl. Environ. Microbiol. 61 (1995), pp. 4362–4366.
  • El-Gendy, N.Sh., 2006. Biodegradation potentials of dibenzothiophene by new bacteria isolated from hydrocarbon polluted soil in Egypt, Biosci. Biotechnol. Res. Asia 3 (1) (2006), pp. 95–106.
  • El-Gendy, N.Sh., Moustafa, Y.M., Habib, S.A., and Ali, Sh, 2011. Evaluation of Corynebacterium variabilis Sh42 as a degrader for different poly aromatic compounds, J. Am. Sci. 6 (11) (2011), pp. 343–356.
  • Kohler, H.P.E., Kohler-Staub, D., and Focht, D.D., 1988. Degradation of 2-hydroxybiphenyl and 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1, Appl. Environ. Microbiol. 54 (1988), pp. 2683–2688.
  • Kohler, H.P.E., Schmid, A., and van der Maarel, M., 1993. Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strainHBP1: Production and consumption of 2,2′,3-trihydroxybiphenyl, J. Bacteriol. 175 (1993), pp. 1621–1628.
  • Sondossi, M., Barriault, D., and Sylvestre, M., 2004. Metabolism of 2,2′- and 3,3′-dihydroxybiphenyl by biphenyl catabolic pathway of Comamonas testosteroni B-356, Appl. Environ. Microbiol. 70 (1) (2004), pp. 174–181.
  • Nuhoglu, A., and Yalcin, B., 2005. Modelling of phenol removal in a batch reactor, Process Biochem. 40 (2005), pp. 1233–1239.
  • Sharma, N.K., Philip, L., and Murty Bhallamudi, S., 2012. Aerobic degradation of phenolics and aromatic hydrocarbons in presence of cyanide, Bioresour. Technol. 121 (2012), pp. 263–273.
  • Sahinkaya, E., and Dilek, F.B., 2007. Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures, J. Biotechnol. 127 (2007), pp. 716–726.
  • Agarry, S.E., Solomon, B.O., and Audu, T.O.K., 2010. Substrate utilization and inhibition kinetics: Batch degradation of phenol by indigenous monoculture of Pseudomonas aeruginosa, Int. J. Biotechnol. Mol. Biol. Res. 1 (2) (2010), pp. 22–30.
  • Noworyta, A., Trusek-Holownia, A., Mielczarski, S., and Kubasiewicz-Ponitka, M., 2006. An integrated pervaporation-biodegradation process of phenolic wastewater treatment, Desalination 198 (2006), pp. 191–197.
  • Agarry, S.E., Solomon, B.O., and Layokun, S.K., 2008. Substrate inhibition kinetics of phenol degradation by binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescence from steady state and wash-out data, Afr. J. Biotechnol. 7 (21) (2008), pp. 3927–3933.
  • Shetty, K.V., Verma, D.K., and Srinikethan, G., 2011. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilized cells of Nocardia hydrocarbonoxydans, Bioprocess Biosyst. Eng. 34 (1) (2011), pp. 45–56.
  • Wolski, E.A., Durruty, I., Haure, P.M., and González, J.F., 2012. Penicillium chrysogenum: Phenol degradation abilities and kinetic model, Wat. Air Soil Pollut. 223 (5) (2012), pp. 2323–2332.
  • Kumar, A., and Kumar, S., 2005. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194, Biochem. Eng. J. 22 (2005), pp. 151–159.
  • Stoilova, I., Krastanov, A., Stanchev, V., Daniel, D., Gerginova, M., and Alexieva, Z., 2006. Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells, Enzyme Microb. Technol. 39 (5) (2006), pp. 1036–1041.
  • Rigo, M., Alegre, R.M., Bezerra, J.R.M.V., Coelho, N., and Bastos, R.G., 2010. Catechol biodegradation kinetics using Candida parapsilopsis, Brazilian Arch. Biol. Technol. 53 (2) (2010), pp. 481–486.
  • Caro, A., Boltes, K., Leton, P., and Garcia-Calvo, E., 2008. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT5279 in biphasic media, Chemosphere 73 (2008), pp. 663–669.
  • Piddington, C.S., Kovacevich, B.R., and Rambosek, T., 1995. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8, J. Appl. Environ. Microbiol. 61 (2) (1995), pp. 468–475.
  • Aiba, S., Shoda, M., and Nagatami, M., 1968. Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng. 10 (1968), pp. 845–864.
  • Andrews, J.F., 1968. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substances, Biotechnol. Bioeng. 10 (1968), pp. 707–723.
  • Monod, J., 1949. The growth of bacterial cultures, Ann. Rev. Microbiol. 3 (1949), pp. 371–394.
  • S.K. Layokun, E.F. Umoh, B.O. Solomon, A kinetic model for the degradation of dodecane by P. fluorescens isolated from the oil polluted area, Warri in Nigeria, J. Nsche. 16 (1987) 48–52..
  • Edwards, V.H., 1970. The influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng. 12 (1970), pp. 679–712.
  • Yano, T., and Koga, S., 1969. Dynamic behavior of the chemostat subject to substrate inhibition, Biotechnol. Bioeng. 11 (1969), pp. 139–153.
  • Wang, S.J., and Loh, K.C., 1999. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation, Enzyme Microb. Technol. 25 (1999), pp. 177–184.
  • Agsrry, S.E., and Solomon, B.O., 2008. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence, Int. J. Environ. Sci. Tech. 5 (2) (2008), pp. 223–232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.