143
Views
6
CrossRef citations to date
0
Altmetric
Articles

Performance analysis of forward osmosis processes from the integral equation theory

&
Pages 5289-5297 | Received 15 Jun 2012, Accepted 24 Sep 2012, Published online: 18 Mar 2013

References

  • Yangali-Quintanilla , V. , Li , Z. , Valladares , R. , Li , Q. and Amy , G. 2011 . Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse . Desalination , 280 ( 1–3 ) : 160 – 166 .
  • L Shaffer , D. , Yip , N.Y. , Gilron , J. and Elimelech , M. 2012 . Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy . J. Membr. Sci. , 415–416 : 1 – 8 .
  • Garcia-Castello , E.M. , Mccutcheon , J.R. and Elimelech , M. 2009 . Performance evaluation of sucrose concentration using forward osmosis . J. Membr. Sci. , 338 ( 1–2 ) : 61 – 66 .
  • Garcia-Castello , E.M. and McCutcheon , J.R. 2011 . Dewatering press liquor derived from orange production by forward osmosis . J. Membr. Sci. , 372 ( 1–2 ) : 97 – 101 .
  • Jia , Y.-X. , Li , H.-L. , Wang , M. , Wu , L.-Y. and Hu , Y.-D. 2010 . Carbon nanotube: Possible candidate for forward osmosis . Sep. Purif. Tech. , 75 ( 1 ) : 55 – 60 .
  • Ma , N. , Wei , J. , Liao , R. and Tang , C.Y. 2012 . Zeolite-polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis . J. Membr. Sci. , 405–406 : 149 – 157 .
  • Wei , J. , Liu , X. , Qiu , C. , Wang , R. and Tang , C.Y. 2011 . Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes . J. Membr. Sci. , 381 ( 1–2 ) : 110 – 117 .
  • McCutcheon , J.R. , McGinnis , R. and Elimelech , M. 2006 . Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance . J. Membr. Sci. , 278 ( 1–2 ) : 114 – 123 .
  • McGinnis , R. , McCutcheon , J.R. and Elimelech , M. 2007 . A novel ammonia–carbon dioxide osmotic heat engine for power generation . J. Membr. Sci. , 305 ( 1-2 ) : 3 – 19 .
  • Achilli , A. , Cath , T.Y. and Childress , A.E. 2010 . Selection of inorganic based draw solutions for forward osmosis applications . J. Membr. Sci. , 364 ( 1-2 ) : 233 – 241 .
  • Sairam , M. , Sereewatthanawut , E. , Li , K. , Bismarck , A. and Livingston , A.G. 2011 . Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—desalination using MgSO4 draw solution . Desalination , 273 ( 2–3 ) : 299 – 307 .
  • Kim , T.-W. , Kim , Y. , Yun , C. , Jang , H. , Kim , W. and Park , S. 2012 . Systematic approach for draw solute selection and optimal system design for forward osmosis desalination . Desalination , 284 : 253 – 260 .
  • Yong , J.S. , Phillip , W.A. and Elimelech , M. 2012 . Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes . J. Membr. Sci. , 392–393 : 9 – 17 .
  • Gray , G.T. , McCutcheon , J.R. and Elimelech , M. 2006 . Internal concentration polarization in forward osmosis: Role of membrane orientation . Desalination , 197 ( 1–3 ) : 1 – 8 .
  • Mi , B. and Elimelech , M. 2008 . Chemical and physical aspects of organic fouling of forward osmosis membranes . J. Membr. Sci. , 320 ( 1–2 ) : 292 – 302 .
  • Mi , B. and Elimelech , M. 2010 . Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents . J. Membr. Sci. , 348 ( 1–2 ) : 337 – 345 .
  • Arkhangelsky , E. , Wicaksana , F. , Chou , S. , Al-Rabiah , A.A. , Al-Zahrani , S.M. and Wang , R. 2012 . Effects of scaling and cleaning on the performance of forward osmosis hollow fiber membranes . J. Membr. Sci. , 415–416 : 101 – 108 .
  • V. Parida, H.Y. Ng., Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation, Desalination 312 (2013) 88–98.
  • Boo , C. , Lee , S. , Elimelech , M. , Meng , Z. and Hong , S. 2012 . Colloidal fouling in forward osmosis: Role of reverse salt diffusion . J. Membr. Sci. , 390–391 : 277 – 284 .
  • Liu , Y. and Mi , B. 2012 . Combined fouling of forward osmosis membranes: Synergistic foulant interaction and direct observation of fouling layer formation . J. Membr. Sci. , 407–408 : 136 – 144 .
  • Zhang , J. , Loong , W.L.C. , Chou , S. , Tang , C. , Wang , R. and Fane , A.G. 2012 . Membrane biofouling and scaling in forward osmosis membrane bioreactor . J. Membr. Sci. , 403–404 : 8 – 14 .
  • Park , S.-M. , Koo , J.-W. , Choi , Y.-K. , Lee , S. , Sohn , J. and Hwang , T.-M. 2012 . Optimization of hybrid system consisting of forward osmosis and reverse osmosis: A Monte Carlo simulation approach . Desalin. Water Treat. , 43 ( 1–3 ) : 274 – 280 .
  • Bamaga , O.A. , Yokochi , A. and Beaudry , E.G. 2009 . Application of forward osmosis in pretreatment of seawater for small reverse osmosis desalination units . Desalin. Water Treat. , 5 : 183 – 191 .
  • Choi , J.-S. , Kim , H. , Lee , S. , Hwang , T.-M. , Oh , H. , Yang , D.R. and Kim , J.H. 2010 . Theoretical investigation of hybrid desalination system combining reverse osmosis and forward osmosis . Desalin. Water Treat. , 15 : 114 – 120 .
  • Chung , T.-S. , Zhang , S. , Wang , K.Y. , Su , J. and Ling , M.M. 2012 . Forward osmosis processes: Yesterday, today and tomorrow . Desalination , 287 : 78 – 81 .
  • Zhao , S. , Zou , L. , Tang , C.Y. and Mulcahy , D. 2012 . Recent developments in forward osmosis: Opportunities and challenges . J. Membr. Sci. , 396 : 1 – 21 .
  • Cath , T.Y. , Childress , A. and Elimelech , M. 2006 . Forward osmosis: Principles, applications, and recent developments . J. Membr. Sci. , 281 ( 1–2 ) : 70 – 87 .
  • Chekli , L. , Phuntsho , S. , Shon , H.K. , Vigneswaran , S. , Kandasamy , J. and Chanan , A. 2012 . A review of draw solutes in forward osmosis process and their use in modern applications . Desalin. Water Treat. , 43 ( 1–3 ) : 167 – 184 .
  • Lee , K. , Baker , R. and Lonsdale , H. 1981 . Membranes for power generation by pressure-retarded osmosis . J. Membr. Sci. , 8 ( 2 ) : 141 – 171 .
  • Loeb , S. , Titelman , L. , Korngold , E. and Freiman , J. 1997 . Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane . J. Membr. Sci. , 129 ( 2 ) : 243 – 249 .
  • Tan , C.H. and Ng , H.Y. 2008 . Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations . J. Membr. Sci. , 324 ( 1–2 ) : 209 – 219 .
  • Mccutcheon , Jeffrey R. and Elimelech , Menachem . 2007 . Modeling water flux in forward osmosis: Implications for improved membrane design . AIChE J. , 53 ( 7 ) : 1736 – 1744 .
  • Tiraferri , A. , Yip , N.Y. , Phillip , W.A. , Schiffman , J.D. and Elimelech , M. 2011 . Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure . J. Membr. Sci. , 367 ( 1–2 ) : 340 – 352 .
  • Zhao , S. and Zou , L. 2011 . Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination . Desalination , 278 ( 1–3 ) : 157 – 164 .
  • Lay , W.C.L. , Zhang , J. , Tang , C. , Wang , R. , Liu , Y. and Fane , A.G. 2012 . Factors affecting flux performance of forward osmosis systems . J. Membr. Sci. , 394–395 : 151 – 168 .
  • Xiao , D. , Li , W. , Chou , S. , Wang , R. and Tang , C.Y. 2012 . A modeling investigation on optimizing the design of forward osmosis hollow fiber modules . J. Membr. Sci. , 392–393 : 76 – 87 .
  • Jung , D.H. , Lee , J. , Kim , D.Y. , Lee , Y.G. , Park , M. , Lee , S. , Yang , D.R. and Kim , J.H. 2011 . Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions . Desalination , 277 ( 1–3 ) : 83 – 91 .
  • Zhao , C. , Wang , J. and Luan , Z. 2011 . Preparation of high concentration polyaluminum chloride with high Alc content by membrane distillation . Chinese J. Chem. Eng. , 19 ( 1 ) : 173 – 176 .
  • Li , W. , Gao , Y. and Tang , C.Y. 2011 . Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: Model development and theoretical analysis with FEM . J. Membr. Sci. , 379 ( 1–2 ) : 307 – 321 .
  • Gruber , M.F. , Johnson , C.J. , Tang , C.Y. , Jensen , M.H. , Yde , L. and Hélix-Nielsen , C. 2011 . Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems . J. Membr. Sci. , 379 ( 1–2 ) : 488 – 495 .
  • Sagiv , A. and Semiat , R. 2011 . Finite element analysis of forward osmosis process using NaCl solutions . J. Membr. Sci. , 379 ( 1–2 ) : 86 – 96 .
  • Hansen , J.S. and Dyre , J.C. 2012 . Simplistic Coulomb forces in molecular dynamics: Comparing the Wolf and shifted-force approximations . J. Phys. Chem. B , 116 ( 19 ) : 5738 – 5743 .
  • Loeb , S. 1976 . Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations . J. Membr. Sci. , 1 : 49 – 63 .
  • Mccutcheon , J.R. and Elimelech , M. 2006 . Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis . J. Membr. Sci. , 284 : 237 – 247 .
  • Kim , A.S. and Chen , H. 2006 . Diffusive tortuosity factor of solid and soft cake layers: A random walk simulation approach . J. Membr. Sci. , 279 ( 1–2 ) : 129 – 139 .
  • Lindahl , E. , Hess , B. and Spoel , D.v.d. 2001 . GROMACS 3.0: A package for molecular simulation and trajectory analysis . J. Mol. Model. , 7 ( 8 ) : 306 – 317 .
  • Foloppe , N. and MacKerell , A.D. Jr. 2000 . All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data . J. Comp. Chem. , 21 ( 2 ) : 86 – 104 .
  • Rizzo , R.C. and Jorgensen , W.L. 1999 . OPLS all-atom model for amines: Resolution of the amine hydration problem . J. Am. Chem. Soc. , 121 ( 20 ) : 4827 – 4836 .
  • A.T. Brunger. X-PLOR Version 3.1 a System for X-ray Crystallography and NMR, Technical report, Yale University, New Haven, CT, 1993.
  • Wang , J. , Cieplak , P. and Kollman , P.A. 2000 . How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules . J. Comp. Chem. , 21 ( 12 ) : 1049 – 1074 .
  • Smith , D. and Dang , L. 1994 . Computer simulations of NaCl association in polarizable water . J. Chem. Phys. , 100 ( 5 ) : 3757 – 3766 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.