108
Views
14
CrossRef citations to date
0
Altmetric
Articles

Pb2+ adsorption behavior of calix[4]arene based Merrifield Resin

, , &
Pages 4666-4674 | Received 10 Apr 2012, Accepted 12 Nov 2012, Published online: 08 Mar 2013

References

  • Rangel-mendez, J.R., and Streat, M., 2002. Mercury and cadmium sorption performance of a fibrous ion exchanger and granular activated carbon, Process. Saf. Environ. Prot. 80 (2002), pp. 150–158.
  • Jia, K., Pan, B.C., Zhang, Q.R., Wang, X.S., Pan, B.J., Zhang, W.M., and Lv, L., 2009. Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters, J. Colloid Interf. Sci. 331 (2009), pp. 453–457.
  • Tangjuank, S., Insuk, N., Tontrakoon, J., and Udeye, V., 2009. World Academy of Science, Eng. Techn. 52 (2009), pp. 110–116.
  • Gaverilescue, M., 2004. Removal of heavy metal ions from environment by Biosorption, Eng. Life. Sci. 4 (2004), pp. 219–232.
  • Iqbal, M., and Edyvean, R.G.J., 2004. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium, Miner. Eng. 17 (2004), pp. 217–223.
  • Sekhar, K.C., Kamalaa, C.T., Chary, N.S., Sastry, A.R.K., Raoa, T.N., and Vairamani, M., 2004. Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass, J. Hazard. Mater. 108 (2004), pp. 111–117.
  • A. Selatnia, A. Boukazoula, N. Kechid, M.Z. Bakhti, A. Chergui, Y. J Kerchich, Biosorption of lead(II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass, Biochemical. Eng. 19 (2004) 127–135..
  • Guidelines for drinking-water quality, third edition, vol. 1, Recommendations WHO, 2004..
  • Zhu, J., Yang, J., and Deng, B., 2010. Ethylenediamine-modified activated carbon for aqueous lead adsorption, Environ. Chem. Lett. 8 (2010), pp. 277–282.
  • Boudrahem, F., Aissani-Benissad, F., and Soualah, A., 2011. Adsorption of lead(II) from aqueous solution by using leaves of date trees as an adsorbent, J. Chem. Eng. Data 56 (2011), pp. 804–1812.
  • Numan Bulut, V., Gundogdub, A., Duran, C., Senturk, H.B., Soylak, M., Elci, L., and Tufekci, M., 2007. A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000, J. Hazard Mater. 146 (2007), pp. 155–163.
  • Tuzen, M., and Soylak, M., 2004. Column system using diaion HP-2MG for determination of some metal ions by flame atomic absorption spectrometry, Anal. Chim. Acta 504 (2004), pp. 325–334.
  • Mendil, D., Tuzen, M., and Soylak, M., 2008. A biosorption system for metal ions on Penicillium italicum – loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations, J. Hazard. Mater. 152 (2008), pp. 1171–1178.
  • Solangi, I.B., Memon, S., and Bhanger, M.I., 2009. Synthesis and application of a highly efficient tetraester calix[4]arene based resin for the removal of Pb2+ from aqueous environment, Anal. Chim. Acta 638 (2009), pp. 146–153.
  • Minhas, F.T., Solangi, I.B., Memon, S., and Bhanger, M.I., 2010. Kinetic study of an effective Pb(II) transport through a bulk liquid membrane containing calix[6]arene hexaester derivative as a carrier, Sep. Sci. Techn. 45 (2010), pp. 1448–1455.
  • Xiaowei, Z., Qiong, J., Naizhong, S., Weihong, Z., and Yusheng, , 2010. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics and isotherms, J. Chem. Eng. Data 55 (2010), pp. 4428–4433.
  • V.K. Gupta, Sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent, Ind. Eng. Chem. Res. 37 (1998) 192–202..
  • Yin, P., Xu, Q., Qu, R., Zhao, G., and Sun, Y., 2010. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material, J. Hazard. Mater. 173 (2010), pp. 710–716.
  • Liu, R., and Liang, P., 2008. Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel, J. Hazard. Mater. 152 (2008), pp. 166–171.
  • He, Q., Hu, Z., Jiang, Y., Chang, X., Tu, Z., and Zhang, L., 2010. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2 aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination, J. Hazard. Mater. 175 (2010), pp. 710–714.
  • Munagapati, V.S., Yarramuthi, V., Nadavala, S.K., Alla, S.R., and Abburi, K., 2010. Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: Kinetics, equilibrium and thermodynamics, Chem. Eng. J. 157 (2010), pp. 357–365.
  • Mahmoud, M.E., Osman, M.M., Hafez, O.F., and Elmelegy, E., 2010. Removal and preconcentration of lead (II), copper (II), chromium (III) and iron (III) from wastewaters by surface developed alumina adsorbents with immobilized 1-nitroso-2-naphthol, J. Hazard. Mater. 173 (2010), pp. 349–357.
  • Tharanitharan, V., and Srinivasan, K., 2010. Kinetic and equilibrium studies of removal of Pb(II) and Cd(II) ions from aqueous solution by modified duolite XAD-761 resins, Asian J. Chem. 22 (2010), pp. 3036–3046.
  • Gutsche, C.D., 1998. Calixarenes: Revisited. Cambridge: Royal Society of Chemistry; 1998.
  • V. Böhmer, Calixarenes, macrocycles with (almost) unlimited possibilities, Angew, Chem. Int. Ed. Engl. 34 (1995) 713–775..
  • Ikeda, A., and Shinkai, S., 1997. Novel cavity design using calix[n]arene skeletons: Toward molecular recognition and metal binding, Chem. Rev. 97 (1997), pp. 1713–1734.
  • M. Yilmaz, Solution state metal complexes of calixarenes and polymeric calixarenes, in: N.P. Cheremisinoff (Ed.), Handbook of Engineering Polymeric Materials, Marcel Dekker, New York, NY, 1997, p. 339..
  • Memon, S., Uysal, G., and Yilmaz, M., 2000. Selective complexation of Hg2+ by biscalix[4]arene nitriles, Sep. Sci. Techn. 35 (2000), pp. 1247–1256.
  • Uysal, G., Memon, S., and Yilmaz, M., 2001. Synthesis and binding properties of polymeric calix[4]arene Nitriles, React. Funct. Polym. 50 (2001), pp. 77–84.
  • Memon, S., Tabakci, M., Roundhill, D.M., and Yilmaz, M., 2005. Useful approach toward the synthesis and metal extractions with polymer appended thioalkyl calix[4]arene, Polymers 46 (2005), pp. 1553–1560.
  • Erden, S., Demirel, A., Memon, S., Yilmaz, M., Canel, E., and Kilic, E., 2006. Using of hydrogen ion-selective poly(vinyl chloride) membrane electrode based on calix[4]arene as thiocyanate ion-selective electrode, Sensor. Actu. B 113 (2006), pp. 113–290.
  • Memon, S., Tabakci, M., Roundhill, D.M., and Yilmaz, M., 2006. Synthesis and evaluation of the Cr(VI) extraction ability of amino/nitrile calix[4]arenes immobilized onto a polymeric backbone, React. Funct. Polym. 66 (2006), pp. 1342–1349.
  • Yilmaz, A., Memon, S., and Yilmaz, M., 1999. Synthesis and binding properties of calix[4]arene telomers, J. Polym. Sci. Part A: Polym. Chem. 37 (1999), pp. 4351–4355.
  • S. Memon, G. Uysal, M. Yilmaz, Synthesis and complexation studies of p-tert-butylcalix[4]crown telomers, J. Mac. Sci – Pure Appl. Chem. Part A. 38 (2001) 173–184..
  • Memon, S., Akceylan, E., Sap, B., Tabakci, M., Roundhill, D.M., and Yilmaz, M., 2003. Polymer supported calix[4]arene derivatives for the extraction of metals and dichromate anions, J. Poly. Env. 11 (2003), pp. 67–74.
  • M. Tabakci, S. Memon, B. Sap, D.M. Roundhill, M. Yilmaz, A calix[4]arene derived dibenzonitrile receptor modified at Its “Lower Rim” by a polymerizable group, J. Mac. Sci – Pure Appl. Chem. Part A 41 (2004) 811–825..
  • Memon, S., Oğuz, O., Yilmaz, A., Tabakci, M., Yilmaz, M., and Ertul, Ş., 2001. Synthesis and extraction study of calix[4]arene dinitrile derivatives incorporated in a polymeric backbone with bisphenol-A, J. Pol. Env. 9 (2001), pp. 97–101.
  • Solangi, I.B., Memon, S., Memon, N., and Bhanger, M.I., 2008. Exploration of Pb2+ selective behavior of calix[6]arene ester derivatives, J. Mol. Sci Part-A. Pure Appl. Chem. 45 (2008), pp. 1050–1010.
  • Roundhill, D.M., Solangi, I.B., Memon, S., Bhanger, M.I., and Yilmaz, M., 2009. The liquid–liquid extraction of toxic metals (Cd, Hg and Pb) by calixarenes, Pak. J. Anal. Env. Chem. 10 (2009), pp. 1–13.
  • Yordanov, A.T., Whittlesey, B.R., and Roundhill, D.M., 1998. Calixarenes derivatized with sulfur-containing functionalities as selective extractants for heavy and precious metal Ions, Inorg. Chem. 37 (1998), pp. 3526–3531.
  • Tabachi, M., Memon, S., Yilmaz, M., and Roundhil, D.M., 2004. Oligomeric calix[4]arene-thiacrown ether for toxic heavy metals, J. Pol. Sci Part A: Poly. Chem. 42 (2004), pp. 186–193.
  • I.B. Solangi, A.A. Bhatti, M.A. Kamboh, S. Memon, M.I. Bhanger, Comparative fluoride sorption study of new calix[4]arene-based resins, Desalination 272 (2011) 98–106..
  • Memon, S., and Yilmaz, M., 2001. Solvent extraction of metal cations by chemically modified biscalix[4]arenas, Sep. Sci. Tech. 36 (2001), pp. 473–486.
  • Kannan, N., and Veemaraj, T., 2009. Removal of lead(II) ions by adsorption onto bamboo dust and commercial activated carbons—A comparative study, E. J. Chem. 6 (2009), pp. 247–256.
  • Kumar, M., Rathorea, D.P.S., and Singh, A.K., 2000. Metal ion enrichment with Amberlite XAD-2 functionalized with Tiron: analytical applications, Analyst 125 (2000), pp. 1221–1226.
  • Mousavi, H.Z., Esfahanib, B.A., and Arjmandi, A., 2009. Solid phase extraction of lead(II) by sorption on grinded eucalyptus stem and determination with flame atomic absorption spectrometry, J. Chin. Chem. Soc. 56 (2009), pp. 974–980.
  • Boudrahem, F., Benissad, F.A., and Soualah, A., 2011. Adsorption of lead(II) from aqueous solution by using leaves of date trees as an adsorbent, J. Chem. Eng. Data 56 (2011), pp. 1804–1812.
  • Huang, Z.H., Zheng, X., Wang, L.W.M., Yang, Q.H., and Kang, F., 2011. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets, Langmuir 27 (2011), pp. 7558–7562.
  • Tangjuank, S., Insuk, N., Tontrakoon, J., and Udeye, V., 2009. Adsorption of lead(II) and cadmium(II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells, World Acad. Science Eng. Techn. 52 (2009), pp. 1–7.
  • Immamuglu, M., and Tekir, O., 2008. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks, Desalination 228 (2008), pp. 108–113.
  • Zhao, X., Jia, Q., Song, N., Zhou, W., and Li, Y., 2010. Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: Kinetics, thermodynamics, and isotherms, J. Chem. Eng. Data 55 (2010), pp. 4428–4433.
  • Haribabua, E., Upadhyaa, Y.D., and Upadhyaya, S.N., 1993. Removal of phenols from effluents by fly ash, Inter. J. Env. Stud. 43 (1993), pp. 169–176.
  • Ho, Y.S., and McKay, G., 1999. Pseudo-second order model for sorption processes, Proc. Biochem. 34 (1999), pp. 451–465.
  • Reichenberg, D., 1953. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange, J. Am. Chem. Soc. 75 (1953), pp. 589–597.
  • Morris, W.J., and Weber, C., 1963. Kinetics of adsorption on carbon from solutions, J. Sanit. Eng. Div. ASCE 89 (1963), pp. 31–59.
  • Memon, G.Z., Bhanger, M.I., Akhtar, M., Talpur, F.N., and Memon, J.R., 2008. Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent, Chem. Eng. J. 138 (2008), pp. 616–621.
  • Sari, A., Mendil, D., Tuzen, M., and Soylak, M., 2008. Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J. 144 (2008), pp. 1–9.
  • Kamboh, M.A., Solangi, I.B., Sherazi, S.T.H., and Memon, S., 2011. Sorption of congo red onto p-tert-butylcalix[4]arene based silica resin, J. Iran. Chem. Soc. 8 (2011), pp. 272–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.