164
Views
25
CrossRef citations to date
0
Altmetric
Articles

Optimization of physicochemical parameters for phenol biodegradation by Candida tropicalis PHB5 using Taguchi Methodology

, , &
Pages 6846-6862 | Received 23 Mar 2012, Accepted 14 Jan 2013, Published online: 08 Mar 2013

References

  • K. Bandhyopadhyay, D. Das, P. Bhattacharyya, B.R. Maiti, Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate. Biochem. Eng. J. 8 (2001) 179–186.
  • J. Yan, W. Jianping, L. Hongmei, Y. Suliang, H. Zongding, The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem. Eng. J. 24 (2005) 243–247.
  • G.A. Hill, C.W. Robinson, Substrate inhibition kinetics for phenol degradation by P. putida. Biotechnol. Bioeng. 17 (1975) 1599–1615.
  • V. Arutchelvan, V. Kanakasabai, S. Nagarajan, V. Muralikrishnan, Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J. Hazard. Mater. 127 (2005) 238–243.
  • A. Dixit, A.K. Mungray, M. Chakraborty, Photochemical oxidation of phenolic wastewaters and its kinetic study. Desalin. Water Treat. 40 (2012) 56–62.
  • S.E. Agarry, A.O. Durojaiye, B.O. Solomon, Microbial degradation of phenols: A review. Int J. Environ. Pollut. 32 (2008) 12–28.
  • A. Fialová, E. Boschke, T. Bley, Rapid monitoring of the biodegradation of phenol-like compounds by the yeast Candida maltosa using BOD measurements. Int. Biodeterior. Biodegrad. 54 (2004) 64–76.
  • Y. Li, C. Wang, Phenol biodegradation in hybrid hollow-fiber membrane bioreactors. World J. Microbiol. Biotechnol. 24 (2008) 1843–1849.
  • Y. Li, K.C. Loh, Activated carbon impregnated polysulfone hollow fiber membrane for cell immobilization and cometabolic biotransformation of 4-chlorophenol in the presence of phenol. J. Membr. Sci. 276 (2006) 81–90.
  • T. Essam, M.A. Amin, O. El Tayeb, B. Mattiasson, B. Guieysse, Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J. Hazard. Mater. 173 (2010) 783–788.
  • A. Banerjee, A.K. Ghoshal, Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresour. Technol. 101 (2010) 5501–5507.
  • Y.J. Liu, A.N. Zhang, X.C. Wang, Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochem. Eng. J. 44 (2009) 187–192.
  • P. Saravanan, K. Pakshirajan, P. Saha, Biodegradation kinetics of phenol by predominantly Pseudomonas sp. in a batch shake flask, Desalin. Water Treat. 36 (2011) 96–104.
  • C.F. Yang, C.M. Lee, Enrichment, isolation, and characterization of phenol-degrading Pseudomonas resinovorans strain P-1 and Brevibacillus sp. strain P-6. Int. Biodeterior. Biodegrad. 59 (2007) 206–210.
  • K.L. Ho, B. Lin, Y.Y. Chen, D.J. Lee, Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules. Bioresour. Technol. 100 (2009) 5051–5055.
  • L. Wang, Y. Li, P. Yu, Z. Xie, Y. Luo, Y. Lin, Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J. Hazard. Mater. 183 (2010) 366–371.
  • Z. Alexievaa, M. Gerginova, P. Zlateva, N. Peneva, Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities. Enzyme Microb. Technol. 34 (2004) 242–247.
  • G. Annadurai, L.Y. Ling, J.F. Lee, Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater. 151 (2008) 171–178.
  • K.K. Prasad, S.V. Mohan, R.S. Rao, B.R. Pati, P.N. Sarma, Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology. Biochem. Eng. J. 24 (2005) (1804) 17–26.
  • D. Haaland, Experimental Design in Biotechnology, Marcel Dekker Inc., New York, NY, ISBN 0-8247-7881-2, 1989.
  • Y.S. Park, S.W. Kang, J.S. Lee, S.I. Hong, S.W. Kim, Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biotechnol. 58 (2002) 761–766.
  • M.N. Dhavlikar, M.S. Kulkarni, V. Mariappan, Combined Taguchi and dual response method for optimization of a centerless grinding operation. J. Mater. Process. Technol. 132 (2003) 90–94.
  • M. Azin, R. Moravej, D. Zareh, Production of xylanase by Trichoderma longibrachiatum on a mixture of wheat bran and wheat straw: Optimization of culture condition by Taguchi method. Enzyme Microb. Technol. 40 (2007) 801–805.
  • K.M. Ghanem, S.M. Al-Garni, A.N. Al-Shehri, Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel Aspergillus flavus isolate. Afr. J. Biotechnol. 8 (2009) 3576–3583.
  • A. Mitra, Fundamentals of Quality Control and Improvement. Pearson Educational Asia, Delhi, 1998.
  • J. Joseph, J.R. Piganatiells, An overview of the strategy and tactics of Taguchi. IIE Trans. 20 (1988) 247–253.
  • R.K. Roy, Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. Wiley, New York, NY, 2001.
  • N.K. Raghu, Off-line quality control, parameter design and Taguchi method. J. Qual. Technol. 17 (1985) 176–188.
  • R.J. Varma, B.G. Gaikwad, Biodegradation and phenol tolerance by recycled cells of Candida tropicalis NCIM 3556. Int. Biodeterior. Biodegrad. 63 (2009) 539–542.
  • K. Dehnad, Quality Control, Robust Design, and the Taguchi Method. Wadsworth and Brooks, Pacific Grove, CA, 1989.
  • G. Taguchi, Introduction to Quality Engineering. Asian Productivity Organization, American supplier institute Inc., Dearborn, MI, 1986.
  • J. Zhou, D. Wu, D. Guo, Optimization of the production of thiocarbohydrazide using the Taguchi method. J. Chem. Technol. Biotechnol. 85 (2010) 1402–1406.
  • L. Tong, C. Wang, C. Chen, C. Chen, Dynamic multiple responses by ideal solution analysis. Eur. J. Oper. Res. 156 (2004) 433–444.
  • R. Periasamy, T. Palvannan, Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology. J. Basic Microbiol. 50 (2010) 548–556.
  • C.S. Tsai, A.J. Aveledo, I.J. McDonald, B.F. Johnson, Diauxic growth of the fission yeast Schizosaccharomyces pombe in mixtures of D-glucose and ethanol or acetate. Can. J. Microbiol. 33 (1987) 593–597.
  • G.S. Lakshmi, C.S. Rao, R.S. Rao, P.J. Hobbs, R.S. Prakasham, Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization. Biochem. Eng. J. 48 (2009) 51–57.
  • M. Shuler, F. Kargi, Bioprocess Engineering: Basic Concept. Prentice Hall of India Private Limited, New Delhi, 2008.
  • N. Kulkarni, A. Shendye, M. Rao, Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23 (1999) 411–456.
  • R. Haapala, S. Linko, E. Parkkinen, P. Sumominen, Production of endo-1,4 l Glucanase and xylanase by Trichoderma reesei immobilized on polyurethane foam. Biotechnol. Technol. 8 (1994) 401–406.
  • N. Ruiz-Ordaz, E. Hernandez-Manzano, J.C. Ruiz-Lagunez, E. Cristiani-Urbina, J. Galindez-Mayer, Growth kinetic model that describes the inhibitory and lytic effects of phenol on Candida tropicalis yeast. Biotechnol. Prog. 14 (1998) 966–969.
  • Y. Li, J. Li, C. Wang, P. Wang, Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresour. Technol. 101 (2010) 6740–6744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.