873
Views
53
CrossRef citations to date
0
Altmetric
Articles

Emerging nanotechnology-based methods for water purification: a review

, , , &
Pages 4089-4101 | Received 10 Jan 2013, Accepted 26 Apr 2013, Published online: 04 Nov 2013

References

  • E.B. Weiss, The evolution of international water law, in: Collected Courses of the Hague Academy of International Law 2007, vol. 331, 2009, pp. 167–404.
  • M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: Including health in the equation. Environ. Sci. Technol. 41 (2007) 17–24.
  • World Health Organization, Global Health Observatory: Causes of child mortality for the year 2010. Available April 5, 2013 from: http://www.who.int/gho/child_health/mortality/mortality_causes_text/en/
  • M.T.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4 (2011) 1946–1971.
  • A.K. Goyal, Nanotechnology for water treatment. Curr. Nanosci. 7 (2011) 640–654.
  • W.-X. Zhang, Nanoscale Iron particles for environmental remediation: An overview, J. Nanopart. Res. 5 (2003) 323–332.
  • R.P. Feynman, There’s plenty of room at the bottom. Caltech. Eng. Sci. 23 (1960) 22–36.
  • M.C. Roco, The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J. Nanopart. Res. 13 (2011) 427–445.
  • H. Kaiser Consultancy, Nanotechnology goes mainstream: Over 2500 nanotechnology based products, 2009. Available February 9, 2012 from: http://newsblaze.com/story/20091127095246zzzz.nb/topstory.html
  • J. Werry, Nanotechnology and you, 2003. Available August 22, 2011 from: http://www.dtrends.com/Nanotech/nanotechcontent.html
  • Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvarez, Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42 (2008) 4591–4602.
  • S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6 (2010) 570–574.
  • J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16 (2005) 2346–2353.
  • H.H. Lara, N.V. Ayala-Nunez, L. Ixtepan-Turrent, C. Rodriguez-Padilla, Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26 (2010) 615–621.
  • M. Yamanaka, K. Hara, J. Kudo, Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71 (2005) 7589–7593.
  • C. Baker, A. Pradhan, L. Pakstis, D.J. Pochan, S.I. Shah, Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Technol. 5 (2005) 244–249.
  • M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27 (2009) 76–83.
  • J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta. Biomater. 4 (2008) 707–716.
  • A. Panacek, L. Kvitech, R. Prucek, M. Kolar, R. Vecerova, N. Pizrova, V.K. Sharma, T. Nevecna, R. Zboril, Silver colloid nanoparticles: Synthesis, characterization and their antibacterial activity. J. Phys. Chem. B 110 (2006) 16248–16253.
  • J.S. Kim, E. Kuk, K.M. Yu, J.H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, C.Y. Hwang, Y.K. Kim, Y.S. Lee, D.H. Jeong, M.H. Cho, Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3 (2007) 95–101.
  • S. Shrivastava, T. Bera, A. Arnab Roy, G. Singh, P. Ramachandrarao, D. Dash, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18 (2007) 1–9.
  • N. Silvestry-Rodriguez, K.R. Bright, D.R. Uhlmann, D.C. Slack, C.P. Gerba, Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water. J. Environ. Sci. Health A 42 (2007) 1579–1584.
  • I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interf. Sci. 275 (2004) 177–182.
  • R.R. Khaydarov, R.A. Khaydarov, O. Gapurova, Y. Estrin, S. Evgrafova, T. Scheper, S.Y. Cho, Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method, in: J. Reithmaier, P. Petkov, W. Kulisch, C. Popov (Eds.), Nanostructured Materials for Advanced Technological Applications, Part 5, NATO Science for Peace and Security Series B: Phys. Biophys., Springer, Amsterdam, 2009, pp. 215–218.
  • E. Parameswari, C. Udayasoorian, S.P. Sebastian, R.M. Jayabalakrishnan, The bactericidal potential of silver nanoparticles. Int. Res. J. Biotechnol. 1 (2010) 44–049.
  • O. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2 (2004) 3.
  • A.R. Shahverdi, A. Fakhimi, H.R. Shahverdi, S. Minaian, Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3 (2007) 168–171.
  • A. Fukuoka, Y. Sakamoto, S. Guan, S. Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Iijima, M. Ichikawa, Novel templating synthesis of necklace-shaped mono- and bimetallic nanowires in hybrid organic-inorganic mesoporous material. J. Am. Chem. Soc. 123 (2001) 3373–3374.
  • H.H. Lara, E.N. Garza-Treviao, L. Ixtepan-Turrent, D.K. Singh, Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 9 (2011) 30. doi:10.1186/1477-3155-9-30.
  • S. Kang, M. Pinault, L.D. Pfefferle, M. Elimelech, Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23 (2007) 8670–8673.
  • A.R. Badireddy, E.M. Hotze, S. Chellan, P.J.J. Alvarez, M.R. Wiesner, Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ. Sci. Technol. 41 (2007) 6627–6632.
  • M. Madigan, J. Martinko, Brock biology of microorganisms. 11th ed. Prentice Hall, Englewood Cliffs, NJ, 2005.
  • S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of nanoparticle? A study of Gram-negative bacterium E. coli. Appl. Environ. Microbiol. 73 (2007) 1712–1720.
  • M. Catauro, M.G. Raucci, G.F. De, A. Marotta, Antibacterial and bioactive silver containing Na2O × CaO × 2SiO2 glass prepared by sol-gel method. J. Mater. Sci. Mater. Med. 15 (2004) 831–837.
  • J.H. Crabtree, R.J. Burchette, R.A. Siddiqi, I.T. Huen, L.L. Hadnott, A. Fishman, The efficacy of silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit. Dial. Int. 23 (2003) 368–374.
  • M.D. Khare, S.S. Bukhari, A. Swann, P. Spiers, I. McLaren, J. Myers, Reduction of catheter-related colonisation by the use of a silver zeolite-impregnated central vascular catheter in adult critical care. J. Infect. 54 (2007) 146–150.
  • L. Lu, R.W. Sun, R. Chen, C.K. Hui, C.M. Ho, J.M. Luk, G.K. Lau, C.M. Che, Silver nanoparticles inhibit Hepatitis B virus replication. Antivir. Ther. 13 (2008) 253–262.
  • J.L. Elchiguerra, J.L. Burt, J.R. Morones, A. Camacho-Bragado, X. Gao, H.H. Lara, M.J. Yacaman, Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3 (2005) 6. doi:10.1186/1477-3155-3-6.
  • T.E.A. Chalew, K.J. Schwab, Are nanoparticles a threat to our drinking water? John Hopkin Univ. Available October 4, 2011 from: http://globalwater.jhu.edu/index.php/magazine/article/
  • L.P. Lukhele, R.W.M. Krause, B.B. Mamba, M.N.B. Momba, Synthesis of silver impregnated carbon nanotubes and cyclodextrin polyurethanes for the disinfection of water. Water SA 36 (2010) 433–436.
  • IRIN, Clay filters clean up in Sri Lanka, 2008. Available July 15, 2011 from: http://www.scidev.net/en/features/clay-filters-clean-up-in-sri-lanka.html
  • D.K. Tiwari, J. Behari, P. Sen, Application of nanoparticles in waste water treatment. World Appl. Sci. J. 3 (2008) 417–433.
  • P. Jain, T. Pradeep, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90 (2005) 59–63.
  • F. Heidarpour, W.A.W.A.K. Ghani, A. Fakhrul-Razi, S. Sobri, A. Torabain, V. Heydarpour, M. Zargar, New trends on microbiological water treatment, Dig. J. Nanomat. Biostruct. 6 (2011) 791–802.
  • S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147 (2009) 1–59.
  • D. Rickerby, M. Morrison, Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra, 2007. Available August 1, 2011 from: http://www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf
  • U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9 (2008) 1–12.
  • H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24 (2012) 229–251.
  • S. Baruah, J. Dutta, Nanotechnology applications in pollution sensing and degradation in agriculture. Environ. Chem. Lett. 7 (2009) 191–204.
  • S. Baruah, J. Dutta, Zinc stannate nanostructures: Hydrothermal synthesis. Sci. Technol. Adv. Mater. 12 (2011) 013004.
  • S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10 (2009) 013001.
  • P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol–gel method. Thin Solid Films 520 (2012) 5561–5567.
  • J. Kim, K. Yong, A facile, coverage controlled deposition of Au nanoparticles on ZnO nanorods by sonochemical reaction for enhancement of photocatalytic activity. J. Nanopart. Res. 14 (2012) 1–10.
  • T. Gao, C. Qian, TiO2 photocatalytic oxidation of organic wastewater. Indust. Water Treat. 20 (2000) 10–13.
  • G.V. Lowry, M. Reinhard, Pd catalyzed TCE dechlorination in groundwater: Solute effects, biological control, and oxidative catalyst regeneration. Environ. Sci. Technol. 34 (2000) 3217–3223.
  • M. Shang, K. Jin, W. Fang, TiO2 film solar photocatalytic oxidation of wool dyeing wastewater. Chem. Environ. Protec. 20 (2000) 11–14.
  • S. Baruah, S.K. Pal, J. Dutta, Nanostructured zinc oxide for water treatment, Nanosci. Nanotechnol. Asia 2 (2012) 90–102.
  • J.E. Kloeppel, New visible light photocatalyst kills bacteria even after light turned off, 2010. Available December 22, 2011 from: http://www.news.illinois.edu/news/10/0119photocatalyst.html
  • V. Likodimos, D.D. Dionysiou, P. Falaras, Clean water: Water detoxification using innovative photocatalysis. Rev. Environ. Sci. Biotechnol. 9 (2010) 87–94.
  • Z. Xiong, J. Ma, W.J. Ng, T.D. Waite, X.S. Zhao, Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Res. 45 (2011) 2095–2103.
  • A. Idris, N. Hassan, N.S. Mohd Ismail, E. Misran, N.M. Yusof, A.F. Ngomsik, A. Bee, Photocatalytic magnetic separable beads for chromium (VI) reduction. Water Res. 44 (2010) 1683–1688.
  • K. Jones, C. Boxall, R. McCabe, D. Shaw, M. Buck, Nanocomposites for water treatment. Meet. Abstr. Electrochem. Soc. 701 (2007) 885.
  • Q. Li, Y.W. Li, Z. Liu, R. Xie, J.K. Shang, Memory antibacterial effect from photoelectron transfer between nanoparticles and visible light photocatalyst. J. Mater. Chem. 20 (2010) 1068–1072.
  • R. Grieken, J. Marugán, C. Sordo, P. Martínez, C. Pablos, Photocatalytic inactivation of bacteria in water using suspended and immobilized silver-TiO2. Appl. Catal. B Environ. 93 (2009) 112–118.
  • L. Zhang, J. Yan, M. Zhou, Y. Liu, Photocatalytic inactivation of bacteria by TiO2-based compounds under simulated sunlight irradiation. Int. J. Mater. Sci. 2 (2012) 43–46.
  • T. Hillie, M. Munasinghe, M. Hlope, Y. Deraniyagala, Nanotechnology, Water and Development, Meridian Institute, Washington DC, 2006. Available November 10, 2011 from: http://sites.merid.org/nano/waterpaper/NanoWaterPaperFinal.pdf
  • J.M. Perez, L. Josephson, R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chem. Bio-Chem. 5 (2004) 261–264.
  • Y. Cui, O. Wei, H. Park, C. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293 (2001) 1289–1292.
  • F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Electrical detection of single viruses, PNAS 101 (2004) 14017–14022.
  • P.D. Hill, Water for poor, 2008. Available November 25, 2011 from: http://www.nanotech-now.com/columns/?article=220
  • D.T. Schoen, A.P. Schoen, L. Hu, H.S. Kim, S.C. Heilshorn, Y. Cui, High speed water sterilization using one-dimensional nanostructures. Nano Lett. 10 (2010) 3628–3632.
  • J.E.V. Nostrand, Detection and destruction of Escherichia coli bacteria and bacteriophage using biofunctionalized nanoshells, Dissertation, Wright State University, 2007.
  • W. Sawahel, Cheap paper nano-sensor detect water toxins, 2010. Available November 3, 2011 from: http://www.scidev.net/en/news/cheap-paper-nano-sensor-detects-water-toxins1.html
  • N. Savage, M.S. Diallo, Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 7 (2005) 331–342.
  • A. Scott, R. Gupta, G.U. Kulkarni, A Simple Water-Based Synthesis of Au Nanoparticle/PDMS Composites for Water purification and targeted drug release, Birck and NCN Publications, 2010, Paper 616. Available October 10, 2011 from: http://docs.lib.purdue.edu/nanopub/616/
  • S. Barany, J. Gregory, A. Shcherba, I. Solomentseva, Nanoparticles of aluminium salts hydrolysis products in water treatment and disinfection. Surf. Chem. Biomed. Environ. Sci. 3 (2006) 369–382.
  • E. Thomson, MIT scientists develop a “paper towel” for oil spills, MIT Tech. Talk 52(28) (2008) 4. Available May 20, 2011 from: http://web.mit.edu/newsoffice/2008/techtalk52-28.pdf
  • H. Hildebrand, K. Mackenzie, F.D. Kopinke, Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes-influence of water constituents. Appl. Catal. B Environ. 91 (2009) 389–396.
  • D.K. Tiwari, J. Behari, Biocidal nature of combined treatment of Ag nanoparticle and ultrasonic irradiation in Escherichia coli dh5. Adv. Biol. Res. 3 (2009) 89–95.
  • K. Sears, L. Dumee, J. Schutz, M. She, C. Huynh, S. Hawkins, M. Duke, S. Gray, Recent developments in carbon nanotube membranes for water purification and gas separation. Materials 3 (2010) 127–149.
  • V.V. Tabara, Nanotechnology and water purification, 2010. Available December 26, 2011 from: http://www.azonano.com/article.aspx?ArticleID=2532
  • J. Liu, Z. Zhao, G. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42 (2008) 6949–6954.
  • P. Kumar, Nanotechnology for water filtration. Available October 15, 2011 from: http://www.d-sector.org/aricle-det.asp?id=980
  • H. Dong, J. Huang, R.R. Koepsel, P. Ye, A.J. Russell, K. Matyjaszewski, Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly (2-dimethylamino) ethyl methacrylate brushes. Biomacromolecules 12 (2011) 1305–1311.
  • R. Gupta, G.U. Kulkarni, Removal of organic compounds from water by using a gold nanoparticle poly(dimethylsiloxane) nanocomposite foam. ChemSusChem 4 (2011) 737–743.
  • T. Hillie, M. Hlophe, Nanotechnology and the challenge of clean water. Nat. Nanotech. 2 (2007) 663–664.
  • M. Berger, Nanotechnology and water treatment, Nanowerk, 2008. Available November 20, 2011, from: http://www.nanowerk.com/spotlight/spotid=4662.php
  • A. Srivastava, O.N. Srivastava, S. Talapatra, R. Vajtai, P.M. Ajayan, Carbon nanotube filters. Nat. Mater. 3 (2004) 610–614.
  • C.H. Cooper, A.G. Cummings, M.Y. Starostin, C.P. Honsinger, Purification of fluids with nanomaterials, U.S. Patent No. 7,211,320, US Patent and Trademark Office, Washington, DC, 2007.
  • M. Diallo, P. Hudrlik, A. Hudrlik, Fe(0)/FeS Dendrimer nanocomposites for reductive dehalogenation of chlorinated haliphatic compounds: Synthesis, characterization and bench scale laboratory evaluation of materials performance, 2006. Available December 22 2011, from: http://www.howard.edu/CEACS/news/HBCU_MI/Howard%20-Diallo.ppt
  • B. Corry, Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112 (2008) 1427–1434.
  • A.N. Chatterjee, D.M. Cannon, E.N. Gatimu, J.V. Sweedler, N.R. Aluru, P.W. Bohn, Modelling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J. Nanopart. Res. 7 (2005) 507–516.
  • A. Kain, Ceramic water filters win IWA award for Cambodia, 2009. Available July 7, 2011 from: http://www.inhabitat.com/2009/03/09/ceramic-water-filters-win-iwa-award-for-cambodia/
  • TATA, 2009. Tata Chemicals launches “Tata Swach”. Available August 4, 2011 from: http://www.nanotech-now.com/news.cgi?story_id=35702
  • TARA, Technology and Action for Rural Advancement, Access to safe water for the bottom of pyramid: Strategies for disseminating technology research benefits, Secondary Research Report, 2010. Available May 4, 2012 from: http://www.dfid.gov.uk/r4d/PDF/Outputs/water/Secondary_Research_Report.pdf
  • C. Pellerin, Nanotechnology could help billions gain access to clean water, 2008. Available February 5, 2011 from: http://www.america.gov/
  • Web-2: Argonide. Available May 8, 2012 from: http://www.argonide.com/
  • Web-3: Solmetex. Available May 8, 2012 from :http://www.solmetex.com/
  • M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 450 (2008) 301–310.
  • J. Brame, Q. Li, P.J.J Alvarez, Nanotechnology-enabled water treatment and reuse: Emerging opportunities and challenges for developing countries, Trends Food Sci. Technol. 22 (2011) 618–624.
  • F. Salamanca-Buentello, D.L. Persad, E.B. Court, D.K. Martin, A.S. Daar, P.A. Singer, Nanotechnology and the developing world. PLoS Med. 2 (2005) e97. doi:10.1371/journal.pmed.0020097.
  • F. Fiessinger, Y. Richard, A. Montiel, P. Musquere, Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide. Sci. Total Environ. 18 (1981) 245–261.
  • C.C.E. Meulemans, The basic principles of UV–disinfection of water, Ozone: Sci. Eng.: J. Int. Ozone Assoc. 9 (1987) 299–313.
  • W.Q. Betancourt, J.B. Rose, Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 126 (2004) 219–234.
  • J.C. Vickers, M.A. Thompson, U.G. Kelkar, The use of membrane filtration in conjunction with coagulation processes for improved NOM removal. Desalination 102 (1995) 57–61.
  • S.S. Madaeni, The application of membrane technology for water disinfection. Water Res. 33 (1999) 301–308.
  • G.S. Logsdon, Comparison of some filtration processes appropriate for Giardia cyst removal, in: P.M. Wallis, B.R. Hammond (Eds.), Advances in Giardia Research, University of Calgary Press, Calgary, 1988, pp. 95–102.
  • Inderscience Publishers, Nanotechnology for water purification, ScienceDaily, 2010. Available April 17, 2012 from http://www.sciencedaily.com-/releases/2010/07/100728111711.htm
  • H. Bai, Z. Liu, D.D. Sun, Hierarchically multifunctional TiO2 nano thorn membrane for waterpurification. Chem. Commun. 46 (2010) 6542–6544.
  • P.A. Singer, F. Salamanca-Buentello, A.S. Daar, Harnessing nanotechnology to improve global equity, 2005. Available April 18, 2012 from: http://www.jointcentreforbioethics.ca/people/publications/HarnessingNanotechnology.pdf
  • Inderscience Publishers, Cheap, clean drinking water purified through nanotechnology, ScienceDaily, 2008, February 20. Available March 27, 2012 from: http://www.sciencedaily.com/releases/2008/02/080220094656.htm
  • V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water. Rev. Sci. Total Environ. 406 (2009) 1–13.
  • R.A. Khaydarov, R.R. Khaydarov, O. Gapurova, Water purification from metal ions using carbon nanoparticle-conjugated polymer nanocomposites. Water Res. 44 (2010) 1927–1933.
  • E.M.V. Hoek, A.K. Ghosh, Nanotechnology-based membranes for water purification, in: N. Savage, M. Diallo, J. Duncan, A. Street, R. Sustich (Eds.), Nanotechnology Applications for Clean Water, William Andrew, New York, NY, 2009, pp. 47–58.
  • J. Theron, J. Walker, T. Cloete, Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 34 (2008) 43–69.
  • R.B. Hill, History of work ethic. Available April 6, 2013 from: http://workethic.coe.uga.edu/hpro.html
  • L.V. Mises, The popular interpretation of the “Industrial Revolution”. Available April 6, 2013 from: http://mises.org/daily/4604
  • K.E. Drexler, Engines of Creation. Fourth State, London, 1996.
  • A. Jabbar, Ata-ul-Mohsin, Pesticide usage patterns and side effects on human health in cotton growing areas of Punjab, in: Proceedings of 12th Pakistan Congress of Zoology, Sindh, Pakistan, 1992, pp. 621–627.
  • A.A. Shvedova, E. Kisin, A.R. Murray, V.J. Johnson, O. Gorelik, S. Arepalli, A.F. Hubbs, R.R. Mercer, P. Keohavong, N. Sussman, J. Jin, J. Yin, S. Stone, B.T. Chen, G. Deye, A. Maynard, V. Castranova, P.A. Baron, V.E. Kagan, Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 295 (2008) L552–L565.
  • A.A. Shvedova, E.R. Kisin, R. Mercer, A.R. Murray, V.J. Johnson, A.I. Potapovich, Y.Y. Tyurina, O. Gorelik, S. Arepalli, D. Schwegler-Berry, A.F. Hubbs, J. Antonini, D.E. Evans, B.K. Ku, D. Ramsey, A. Maynard, V.E. Kagan, V. Castranova, P. Baron, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289 (2005) L698–L708.
  • R.R. Mercer, A.F. Hubbs, J.F. Scabilloni, L. Wang, L.A. Battelli, D. Schwegler-Berry, V. Castranova, D.W. Porter, Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part. Fibre Toxicol. 7 (2010) 28.
  • L.M. Sargent, A.A. Shvedova, A.F. Hubbs, J.L. Salisbury, S.A. Benkovic, M.L. Kashon, D.T. Lowry, A.R. Murray, E.R. Kisin, S. Friend, K.T. McKinstry, L. Battelli, S.H. Reynolds, Induction of aneuploidy by single-walled carbon nanotubes. Environ. Mol. Mutagen. 50 (2009) 708–717.
  • L.E.A. Calderon-Garciduenas, Long term air pollution exposure is associated with neuro-inflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid-42 and-synuclein in children and young adults. Toxicol. Pathol. 36 (2008) 289.
  • Z.X. Wu, J.S. Barker, T.P. Batchelor, R.D. Dey, Interleukin (IL)-1 regulates ozone-enhanced tracheal smooth muscle responsiveness by increasing substance P (SP) production in intrinsic airway neurons of ferret. Respir. Physiol. Neurobiol. 164 (2008) 300–311.
  • V. Freyre-Fonseca, N.L. Delgado-Buenrostro, E.B. Gutiérrez-Cirlos, C.M. Calderón-Torres, T. Cabellos-Avelar, Y. Sánchez-Pérez, E. Pinzón, I. Torres, E. Molina-Jijón, C. Zazueta, J. Pedraza-Chaverri, C.M. García-Cuéllar, Y.I. Chirino, Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol. Lett. 202 (2011) 111–119.
  • G.C.M. Falck, H.K. Lindberg, S. Suhonen, M. Vippola, E. Vanhala, J. Catalán, K. Savolainen, H. Norppa, Genotoxic effects of nanosized and fine TiO2. Hum. Exp. Toxicol. 28 (2009) 339–352.
  • R.F. Hamilton, N. Wu, D. Porter, M. Buford, M. Wolfarth, A. Holian, Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part. Fibre Toxicol. 6 (2009) 35.
  • E.J. Park, K. Park, Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in-vivo and in-vitro. Toxicol. Lett. 184 (2009) 18–25.
  • J.M. Zook, R.I. Maccuspie, L.E. Locascio, M.D. Halter, J.T. Elliot, Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their sizes on hemolytic cytotoxicity. Nanotoxicol. 5 (2011) 517–530.
  • P.R. Lockman, J.M. Koziara, R.J. Mumper, D.D. Allen, Nanoparticle surface charges alter blood brain barrier integrity and permeability. J. Drug Target 12 (2004) 635–641.
  • W.A. Nelsonrees, D.W. Daniels, R.R. Flandermeyer, Cross contamination of cells in culture, Science 212 (1981) 446–452.
  • M. Lacroix, Persistent use of false cell lines. Int. J. Cancer 122 (2008) 1–4.
  • M.A. Alaldin, C.J. Murphy, Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?, J. Nanopart. Res. 12 (2010) 2313–2333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.