66
Views
14
CrossRef citations to date
0
Altmetric
Articles

The influence of polychromatic light on methomyl degradation in TiO2 and ZnO aqueous suspension

, , &
Pages 4342-4349 | Received 13 Jun 2012, Accepted 02 May 2013, Published online: 04 Jun 2013

References

  • W.J. Hayes, E.R. Laws (Eds.), Handbook of Pesticide Toxicology, Classes of Pesticides, Academic Press, New York, NY, vol. 3, 1990.
  • R.E. Gosselin, R.P. Smith, H.C. Hodge, Clinical Toxicology of Commercial Products. fifth ed. ed. Williams and Wilkins, Baltimore, MD, 1984.
  • C.D.S. Tomlin, The Pesticide Manual. fifteenth ed. ed. BCPC, Hampshire, 2009 . p. 757.
  • EFSA. Conclusion on Pesticide Peer Review Regarding the Risk Assessment of the Active Substance Methomyl. European Food Safety Authority (EFSA), EFSA Scientific Report 222, 2008, pp. 1–99. Available from: <http://ec.europa.eu/sanco_pesticides/public/>.
  • T.J. Strathmann, A.T. Stone, Reduction of the carbamate pesticides oxamyl and methomyl by dissolved FeII and CuI. Environ. Sci. Technol. 35 (2001) 2461–2469.
  • C. Gomes da Silva, J.L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. J. Photochem. Photobiol. A 155 (2003) 133–136.
  • Sze-Mun Lam, Jin-Chung Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. Desalin. Water Treat. 41 (2012) 131–169.
  • J. Dostanić, D. Lončarević, Lj Rožić, S. Petrović, D. Mijin, D.M. Jovanović, Photocatalytic degradation of azo pyridone dye: Optimization using response surface methodology. Desalin. Water Treat. 51 (2013) 2802–2812.
  • B. Krishnakumar, K. Selvam, R. Velmurugan, M. Swaminathan, Influence of operational parameters on photodegradation of Acid Black 1 with ZnO. Desalin. Water Treat. 24 (2010) 132–139.
  • N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye Acid red 14 in water: Investigation of the effect of operational parameters. J. Photochem. Photobiol. A 157 (2003) 111–116.
  • M. Karkmaz, E. Puzenat, C. Guillarad, J.M. Herrmann, Photocatalytic degradation of the alimentary azo dye amaranth: Mineralization of the azo group to nitrogen. Appl. Catal. B 51 (2004) 183–194.
  • N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye Acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A 162 (2004) 317–322.
  • A. Tomašević, D. Mijin, E. Kiss, Photochemical behavior of the insecticide methomyl under different conditions. Sep. Sci. Technol. 45 (2010) 1617–1627.
  • I. Poulios, M. Kositzi, K. Pitarakis, S. Beltsios, I. Oikonomou, Photocatalytic oxidation of methomyl in the presence of semiconducting oxides. Int. J. Environ. Pollut. 28 (2006) 33–44.
  • S. Malato, J. Blanco, J. Cáceres, A.R. Fernandez-Alba, A. Agüera, A. Rodriguez, Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal. Today 76 (2002) 209–220.
  • M. Tamimi, M. Belmouden, S. Qourzal, A. Assabbane, Y. Ait-Ichou, Photocatalytic degradation of methomyl with the presence of titanium dioxide (Degussa P-25). Fresenius Environ. Bull. 15 (2006) 1226–1231.
  • M. Tamimi, S. Qourzal, A. Assabbane, J.M. Chovelon, C. Ferronato, Y. Ait-Ichou, Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochem. Photobiol. Sci. 5 (2006) 477–482.
  • I. Oller, W. Gernjak, M.I. Maldonado, L.A. Pérez-Estrada, J.A. Sánchez-Pérez, S. Malato, Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. B 138 (2006) 507–517.
  • A.R. Fernández-Alba, D. Hernando, A. Agüera, J. Cáceres, S. Malato, Toxicity assays: A way for evaluating AOPs efficiency. Water Res. 36 (2002) 4255–4262.
  • S. Malato, J. Blanco, J. Vidal, D. Alacrón, M.I. Maldonado, J. Cáceres, W. Gernjak, Applied studies in solar photocatalytic detoxification: An overview. Sol. Energy 75 (2003) 329–336.
  • M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Ait-Ichou, Methomyl degradation in aqueous solutions by Fenton, s reagent and the photo-Fenton system. Sep. Purif. Technol. 61 (2008) 103–108.
  • A. Tomašević, G. Bošković, D. Mijin, E.E. Kiss, Decomposition of methomyl over supported iron catalysts. React. Kinet. Catal. Lett. 91 (2007) 53–59.
  • A. Tomašević, E. Kiss, S. Petrovic, D. Mijin, Study on the photocatalytic degradation of insecticide methomyl in water. Desalination 262 (2010) 228–234.
  • A. Zapata, I. Oller, E. Bizani, J.A. Sanchez-Perez, M.I. Maldonado, S. Malato, Evaluatuion of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture. Catal. Today 144 (2009) 94–99.
  • I.K. Konstantinou, T.A. Albanis, Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and degradation pathways. Appl. Catal. B 42 (2003) 319–335.
  • M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. J. Hazard. Mater. B 133 (2006) 226–232.
  • S. Rabindranathan, D.P. Suja, S. Yesodharan, Photocatalytic degdadation of phosphamidon on semiconductor oxides. J. Hazard. Mater. B 102 (2003) 217–229.
  • N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khatae, M.H. Rasoulifard, Preparation and investigation of photocatalytic properties of ZnO nanocrystals: Effect of operational parameters and kinetic study. Int. J. Chem. Biomol. Eng. 1 (2008) 24–29.
  • E. Evgenidou, K. Fytianos, I. Poulios, Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B 59 (2005) 81–89.
  • H. Gupta, S. Tanaka, Photocatalytic mineralization of perchloroethylene using titanium dioxide. Water Sci. Technol. 31 (1995) 47–54.
  • C. Wu, X. Liu, D. Wei, J. Fan, Photosonochemical degradation of phenol in water. Water Res. 35 (2001) 3927–3933.
  • B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Solar light induced and TiO2 assisted degradation of textile dye Reactive Blue 4. Chemosphere 46 (2002) 1173–1181.
  • N. Guettai, H. Ait Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: Kinetics study. Desalination 185 (2005) 439–448.
  • H.Y. Chen, O. Zahraa, M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. J. Photochem. Photobiol. A 108 (1997) 37–44.
  • S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147 (2009) 1–59.
  • J. Huang, H. Ding, W.S. Dodson, Y. Li, Application of TiO2 sol for UV radiation measurements. Anal. Chim. Acta 311 (1995) 115–122.
  • M. Muneer, D. Bahnemann, Semiconductor-mediated photocatalyzed degradation of two selected pesticides derivatives, terbacil and 2,4,5-tribromimidazole, in aqueous suspension. Appl. Catal. B 36 (2002) 95–111.
  • D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, Recombination pathways in Degussa P25 formulation of TiO2: Surface versus lattice mechanisms. J. Phys. Chem. B 109 (2005) 977–980.
  • N. Serpone, G. Suavé, R. Koch, H. Tahiri, P. Pichat, P. Piccini, E. Pelizzetti, H. Hidaka, Standardization protocol of process efficiences and activation parameters in heterogeneous photocatalysis: Relative photonic efficiences. J. Photochem. Photobiol. A 94 (1996) 191–203.
  • M. Nargiello, T. Herz, Physical-chemical characteristics of P-25 making it extremely suited as the catalyst in photodegradation of organic compounds, in: D. Ollis, H. Al-Akabi (Eds.), Proceedings of the first International Conference on TiO2 Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam, 1993, pp. 801–807.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.