340
Views
18
CrossRef citations to date
0
Altmetric
Articles

Review of bio-hydrogen production and new application in the pollution control via microbial electrolysis cell

, , , , , & show all
Pages 5413-5421 | Received 22 Nov 2012, Accepted 15 May 2013, Published online: 18 Jun 2013

References

  • Z.Q. Mao, Infinite hydrogen–future energy. Chinese J. Nat. 28 (2005) 14–18. (In Chinese).
  • K. Bélafi-Bakó, P. Bakonyi, N. Nemestóthy, Z. Pientka, Biohydrogen production in integrated system. Desalin. Water Treat. 14 (2010) 116–118.
  • D.F. Li, X.H. Zhou, G. Li, J.Y. Du, Q.G. Zhang, Review of hydrogen production reactor and technology via photosynthetic bacteria. Biomass Chem. Eng. 43 (2009) 56–61. (In Chinese).
  • S.A. Cheng, B.E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 104 (2007) 18871–18873.
  • H. Liu, S. Grot, B.E. Logan, Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39 (2005) 4317–4320.
  • B.E. Logan, D. Call, S.A. Cheng, H.V.M. Hamelers, T.H. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42 (2008) 8630–8640.
  • S.A. Cheng, B.E. Logan, Evaluation of catalysts and membranes for high yield biohydrogen production via electrohydrogenesis in microbial electrolysis cells (MECs). Water Sci. Technol. 58 (2008) 853–857.
  • D. Call, B.E. Logan, Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42 (2008) 3401–3406.
  • P.A. Selembo, J.M. Perez, W.A. Lloyd, B.E. Logan, High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells, Int. J. Hydrogen Energy 34 (2009) 5373–5381.
  • H.S. Lee, B.E. Rittmann, Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int. J. Hydrogen Energy 35 (2009) 920–927.
  • H.Q. Hu, Y.Z. Fan, H. Liu, Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res. 42 (2008) 4172–4178.
  • A. Escape, M.F. Manuel, A. Morán, X. Gómez, S.R. Guiot, B. Tartakovsky, Hydrogen production from glycerol in a membraneless microbial electrolysis cell. Energy Fuels 23 (2009) 4612–4618.
  • B. Tartakovsky, M.F. Manuel, H. Wang, S.R. Guiot, High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int. J. Hydrogen Energy 34 (2009) 672–677.
  • L. Lu, N.Q. Ren, D.F. Xing, B.E. Logan, Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron. 24 (2009) 3055–3060.
  • S.A. Cheng, B.E. Logan, High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour. Technol. 102 (2011) 3571–3574.
  • Y.J. Kim, H.S. Lee, E.S. Kim, S.S. Bae, J.K. Lim, R. Matsumi, A.V. Lebedinsky, T.G. Sokolova, D.A. Kozhevnikova, S.S. Cha, S.J. Kim, K.K. Kwon, T. Imanaka, H. Atomi, E.A. Bonch-Osmolovskaya, J.H. Lee, S.G. Kang, Formate-driven growth coupled with H2 production. Nature 467 (2010) 352–356.
  • Y.X. Huang, X.W. Liu, X.F. Sun, G.P. Sheng, Y.Y. Zhang, G.M. Yan, S.G. Wang, A.W. Xu, H.Q. Yu, A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int. J. Hydrogen Energy 36 (2011) 2773–2776.
  • R.C. Wagner, J.M. Regan, S.E. Oh, Y. Zuo, B.E. Logan, Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 43 (2009) 1480–1488.
  • A.J. Wang, D. Sun, G.L. Cao, H.Y. Wang, N.Q. Ren, W.M. Wu, B.E. Logan, Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour. Technol. 102 (2011) 4137–4143.
  • P.D. Kiely, R. Cusick, D.F. Call, P.A. Selembo, J.M. Regan, B.E. Logan, Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour. Technol. 102 (2011) 388–394.
  • L. Lu, D.F. Xing, T.H. Xie, N.Q. Ren, B.E. Logan, Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells. Biosens. Bioelectron. 25 (2010) 2690–2695.
  • J.Y. Nam, J.C. Tokash, B.E. Logan, Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int. J. Hydrogen Energy 36 (2011) 10550–10556.
  • E. Lalaurette, S. Thammannagowda, A. Mohagheghi, P.C. Maness, B.E. Logan, Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy 34 (2009) 6201–6210.
  • K. Bélafi-Bakó, B. Vajda, N. Nemestothy, Study on operation of a microbial fuel cell using mesophilic anaerobic sludge, Desalin. Water Treat 35 (2011) 222–226.
  • J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol. 114 (2012) 275–280.
  • T.H. Sleutels, H.V. Hamelers, C.J. Buisman, Effect of mass and charge transport speed and direction in porus anodes on microbial electrolysis cell performance. Bioresour. Technol. 102 (2011) 399–403.
  • F.X. Li, Y. Sharma, Y. Lei, B.K. Li, Q.X. Zhou, Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol. 160 (2009) 168–181.
  • A.J. Wang, W.Z. Liu, N.Q. Ren, H.Y. Cheng, D.J. Lee, Reduced internal resistance of microbial electrolysis cell (MEC) as factors of configuration and stuffing with granular activated carbon. Int. J. Hydrogen Energy 35 (2010) 13488–13492.
  • H.S. Lee, C.I. Torres, P. Parameswaran, B.E. Rittmann, Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ. Sci. Technol. 43 (2009) 7971–7976.
  • D.F. Call, M.D. Merrill, B.E. Logan, High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol. 43 (2009) 2179–2183.
  • R.A. Rozendal, A.W. Jeremiasse, H.V. Hamelers, C.J. Buisman, Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 42 (2008) 629–634.
  • Y.M. Zhang, M.D. Merrill, B.E. Logan, The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. Int. J. Hydrogen Energy 35 (2010) 12020–12028.
  • J.R. Ambler, B.E. Logan, Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. Int. J. Hydrogen Energy 36 (2011) 160–166.
  • L.D. Munoz, B. Erable, L. Etcheverry, J. Riess, R. Basséguy, A. Bergel, Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC). Electrochem. Commun. 12 (2010) 183–186.
  • A.W. Jeremiasse, H.V. Hamelers, C.J. Buisman, Microbial electrolysis cell with a microbial biocathode. Bioelectrochem. 78 (2010) 39–43.
  • H.Q. Hu, Y.Z. Fan, H. Liu, Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrogen Energy 34 (2009) 8535–8542.
  • K.J. Chae, M.J. Choi, K.Y. Kim, F.F. Ajayi, I.S. Chang, I.S. Kim, A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environ. Sci. Technol. 43 (2009) 9525–9530.
  • P.A. Selembo, M.D. Merrill, B.E. Logan, Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. Int. J. Hydrogen Energy 35 (2010) 428–437.
  • J.C. Tokash, B.E. Logan, Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrogen Energy 36 (2011) 9439–9445.
  • A.W. Jeremiasse, J. Bergsma, J.M. Kleijn, M. Saakes, C.J. Buisman, M.C. Stuart, H.V. Hamelers, Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. Int. J. Hydrogen Energy 36 (2011) 10482–10489.
  • D.F. Call, B.E. Logan, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Bioresour. Bioelectron. 26 (2011) 4526–4531.
  • A.J. Wang, W.Z. Liu, N.Q. Ren, J.Z. Zhou, S.A. Cheng, Key factors affecting microbial anode potential in a microbial electrolysis cell for H2 production. Int. J. Hydrogen Energy 35 (2010) 13481–13487.
  • G. Kyazze, A. Popov, R. Dinsdale, S. Esteves, F. Hawkes, G. Premier, A. Guwy, Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int. J. Hydrogen Energy 35 (2010) 7716–7722.
  • B. Tartakovsky, P. Mehta, G. Santoyo, S.R. Guiot, Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage. Int. J. Hydrogen Energy 36 (2011) 10557–10564.
  • W.Z. Liu, A.J. Wang, D. Sun, N.Q. Ren, Y.Q. Zhang, Bio-community analysis during the anode biofilm reformation in a two-chamber microbial electrolysis cell for H2 production. Biotechnol. 150S (2010) S26.
  • K.J. Chae, M.J. Choi, K.Y. Kim, F.F. Ajayi, I.S. Chang, I.S. Kim, Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int. J. Hydrogen Energy 35 (2010) 13379–13386.
  • A.J. Wang, W.Z. Liu, Y. Deng, J.D.V. Nostrand, J.Z. Zhou, Multiple community states of planktonic communities on functional gene structure in microbial electrolysis cell (MEC). Bioelectrochem. 150S (2010) S239–S240.
  • Y.M. Sun, J.C. Wei, P. Liang, X. Huang, Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Biores. Technol. 102 (2011) 10886–10891.
  • P.D. Kiely, J.M. Regan, B.E. Logan, The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Biotechnol. 22 (2011) 378–385.
  • P.D. Kiely, G. Rader, J.M. Regan, B.E. Logan, Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation endproducts. Biores. Technol. 102 (2011) 361–366.
  • A.J. Wang, D. Sun, N.Q. Ren, L.H. Liu, W.Z. Liu, H.Y. Cheng, An exoelectrogenic consortia isolated from a microbial electrolysis cell for H2 production, Biotechnol. 136S (2008) S295.
  • C.A.P. Arellano, S.S. Martínez, Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode. Int. J. Hydrogen Energy 32 (2007) 3163–3169.
  • M. Mascia, A. Vacca, A.M. Polcaro, S. Palmas, J.R. Ruiz, A.D. Pozzo, Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: Experimental study and mathematical model. Hazard. Mater. 174 (2010) 314–322.
  • M.T. Alcántara, J. Gómez, M. Pazos, M.A. Sanromán, Combined treatment of PAHs contaminated soils using the sequence extraction with surfactant-electrochemical degradation. Chemosphere 70 (2008) 1438–1444.
  • L.J.J. Janssen, L. Koene, The role of electrochemistry and electrochemical technology in environmental protection. Chem. Eng. J. 85 (2002) 137–146.
  • E. Tauchert, S. Schneider, J.L. Morais, P. Peralta-Zamora, Photochemically-assisted electrochemical degradation of landfill leachate. Chemosphere 64 (2006) 1458–1463.
  • L. Szpyrkowicz, S.N. Kaul, R.N. Neti, S. Satyanarayan, Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res. 39 (2005) 1601–1613.
  • X.P. Zhu, J.R. Ni, J.J. Wei, X. Xing, H.N. Li, Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. J. Hazard. Mater. 189 (2011) 127–133.
  • P. Asaithambi, M. Matheswaran, Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology, Arab. J. Chem. (2011) (in press).
  • M. Patoni, N. Kalogerakis, Effect of acclimatization factors on reproducibility of biogas production in anaerobic cultures from electrochemically pre-treated or filtered olive mill wastewater. Desalin. Water Treat. 23 (2010) 206–213.
  • K.A. Karanasios, M.K. Michailides, I.A. Vasiliadou, S. Pavlou, D.V. Vayenas, Potable water hydrogenotrophic denitrification in packed-bed bioreactors coupled with a solar-electrolysis hydrogen production system. Desalin. Water Treat. 33 (2011) 86–96.
  • S.J. Kim, K.Y. Lee, K.C. Lee, N. Chung, D.I. Jung, Effect of general ions on biological treatment of perchlorates in smelting wastewater. Desalin. Water Treat. 48 (2012) 60–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.