87
Views
9
CrossRef citations to date
0
Altmetric
Articles

Decolourisation of Metanil Yellow by visible-light photocatalysis with N-doped TiO2 nanoparticles: influence of system parameters and kinetic study

&
Pages 5528-5540 | Received 30 Mar 2013, Accepted 15 May 2013, Published online: 18 Jun 2013

References

  • G. McKay, M.S. Otterburn, D.A. Aga, Fuller’s earth and fired clay as adsorbent for dye stuffs, Equilibrium and rate constants. Water Air Soil Pollut. 24 (1985) 307–322.
  • A.R. Gregory, S. Elliot, P. Kluge, Ames testing of Direct Black 3B parallel carcinogenicity. J. Appl. Toxicol. 1 (1991) 308–313.
  • B.M. Hausen, A case of allergic contact dermatitis due to Metanil Yellow. Contact dermatitis 31 (1994) 117–118.
  • S.M. Sachdeva, K.V. Mani, S.K. Adval, V.P. Jalpota, K.C. Rasela, D.S. Chadha, Acquired toxic methaemoglobinaemia. J. Assoc. Physicians India 40 (1992) 239–240.
  • M. Das, S. Ramchandani, R.K. Upreti, S.K. Khanna, Metanil Yellow: A biofunctional inducer of hepatic phase I and phase II xenoblastic-metabolising enzymes. Food Chem. Toxicol. 35 (1997) 835–838.
  • S. Ramachandani, M. Das, A. Joshi, S.K. Khanna, Effect of oral and parental administration of Metanil Yellow on some hepatic and intestinal biochemical parameters. J. Appl. Toxicol. 17 (1997) 85–91.
  • O.M. Prasad, P.B. Rastogi, Haematological changes induced by feeding common food colour, Metanil Yellow in albino mice. Toxicol. Lett. 16 (1983) 103–107.
  • T.N. Nagaraja, T. Desiraju, Effects of chronic consumption of Metanil Yellow by developing and adult rats on brain regional levels of noradrenaline, dopamine and serotonin, on acetylcholine esterase activity and on operant conditioning. Food Chem. Toxicol. 31 (1993) 41–44.
  • S. Cheng, D.L. Oatley, P.M. Williams, C.J. Wrigh, Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res. 46 (2012) 33–42.
  • E. Ellouze, N. Tahri, R.B. Amar, Enhancement of textile wastewater treatment process using nanofiltration. Desalination 286 (2012) 16–23.
  • S. Yu, Z. Chen, Q. Cheng, Z. Lü, M. Liu, Application of thin-film composite hollow fiber membrane to submerged nanofiltration of anionic dye aqueous solutions. Sep. Purif. Technol. 88 (2012) 121–129.
  • M. Riera-Torres, C. Gutiérrez-Bouzán, M. Crespi, Combination of coagulation–focculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252 (2010) 53–59.
  • F. Zidane, P. Drogui, B. Lekhlif, J. Bensaid, J.-F. Blais, S. Belcadi, K. El kacem, Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation. J. Hazard. Mater. 155 (2008) 153–163.
  • M.-C. Wei, K.-S. Wang, C.-L. Huang, C.-W. Chiang, T.-J. Chang, S.-S. Lee, S.-H. Chang, Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor. Chem. Eng. J. 192 (2012) 37–44.
  • G. Ciardelli, N. Ranieri, The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation. Water Res. 35 (2001) 567–572.
  • K. Shakir, A.F. Elkafrawy, H.F. Ghoneimy, S.G.E. Beheir, M. Refaat, Removal of Rhodamine B (a basic dye) and Thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Res. 44 (2010) 1449–1461.
  • S. Meriç, H. Selcuk, M. Gallo, V. Belgiorno, Decolourisation and detoxifying of Remazol Red dye and its mixture using Fenton’s reagent. Desalination 173 (2005) 239–248.
  • C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Optimization of the azo dye Procion Red H-EXL degradation by Fenton’s reagent using experimental design. J. Hazard. Mater. 164 (2009) 987–994.
  • N.K. Daud, U.G. Akpan, B.H. Hameed, Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study. Desalin. Water Treat. 37 (2012) 1–7.
  • M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149 (2007) 735–741.
  • N.M. Mahmoodi, Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279 (2011) 332–337.
  • A. Mittal, V.K. Gupta, A. Malviya, J. Mittal, Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-oiled Soya). J. Hazard. Mater. 151 (2008) 821–832.
  • A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. J. Hazard. Mater. 150 (2008) 364–375.
  • R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Study of equilibrium, kinetic and thermodynamic parameters about Methylene Blue adsorption onto natural zeolite. Chem. Eng. J. 145 (2009) 496–504.
  • Z. Hu, H. Chen, F. Ji, S. Yuan, Removal of Congo Red from aqueous solution by cattail root. J. Hazard. Mater. 173 (2010) 292–297.
  • A. Mittal, V.K. Gupta, Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol. Environ. Chem. 92 (2010) 1813–1823.
  • C. Xia, Y. Jing, Y. Jia, D. Yue, J. Ma, X. Yin, Adsorption properties of Congo Red from aqueous solution on modified hectorite: Kinetic and thermodynamic studies. Desalination 265 (2011) 81–87.
  • M. Auta, B.H. Hameed, Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of Methylene Blue. Chem. Eng. J. 198–199 (2012) 219–227.
  • L. Wang, L. Jian, Adsorption of C.I. Reactive Red 228 dye from aqueous solution by modified cellulose from flax shive: Kinetics, equilibrium, and thermodynamics. Ind. Crops Prod. 42 (2013) 153–158.
  • A. Mittal, D. Jhare, J. Mittal, Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-oiled Soya: Isotherm, kinetics and bulk removal. J. Mol. Liq. 179 (2013) 133–140.
  • A. Mittal, V. Thakur, V. Gajbe, Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environ. Sci. Pollut. Res. 20 (2013) 260–269.
  • W. Li, S. Zhao, B. Qi, Y. Du, X. Wang, M. Huo, Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Appl. Catal., B 92 (2009) 333–340.
  • Y. Zhan, X. Zhou, B. Fu, Y. Chen, Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst. J. Hazard. Mater. 187 (2011) 348–354.
  • R. Prihod’ko, I. Stolyarova, G. Gündüz, O. Taran, S. Yashnik, V. Parmon, V. Goncharuk, Fe-exchanged zeolites as materials for catalytic wet peroxide oxidation. Degradation of Rodamine G dye. Appl. Catal., B 104 (2011) 201–210.
  • A. Safavi, S. Momeni, Highly efficient degradation of azo dyes by palladium/hydroxyapatite/Fe3O4 nanocatalyst. J. Hazard. Mater. 201–202 (2012) 125–131.
  • K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl. Catal., B 48 (2004) 83–93.
  • E. Bizani, K. Fytianos, I. Poulios, V. Tsiridis, Photocatalytic decolorization and degradation of dye solutions and wastewaters in the presence of titanium dioxide. J. Hazard. Mater. 136 (2006) 85–94.
  • K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, C. Guillard, Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B isotherm of adsorption, kinetic of decolorization and mineralization. Appl. Catal., B 77 (2007) 100–109.
  • V. Elías, E. Vaschetto, K. Sapag, M. Oliva, S. Casuscelli, G. Eime, MCM-41-based materials for the photo-catalytic degradation of Acid Orange 7. Catal. Today 172 (2011) 58–65.
  • A. Nezamzadeh-Ejhieh, Z. Banan, A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of Crystal Violet. Desalination 279 (2011) 146–151.
  • S.K. Maji, A.K. Dutta, D.N. Srivastava, P. Paul, A. Mondal, B. Adhikary, Effective photocatalytic degradation of organic pollutant by ZnS nanocrystals synthesized via thermal decomposition of single-source precursor. Polyhedron 30 (2011) 2493–2498.
  • R.K. Upadhyay, M. Sharma, D.K. Singh, S.S. Amritphale, N. Chandra, Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents. Sep. Purif. Technol. 88 (2012) 39–45.
  • M. Sharma, T. Jain, S. Singh, O.P. Pandey, Photocatalytic degradation of organic dyes under UV–visible light using capped ZnS nanoparticles. Sol. Energy 86 (2012) 626–633.
  • X. Li, J. Zhu, L. Hexing, Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS. Appl. Catal., B 123–124 (2012) 174–181.
  • V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mat. Sci. Eng. C 32 (2012) 12–17.
  • J. Yang, J. Dai, J. Li, Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation. Environ. Sci. Pollut. Res. 20 (2013) 2435–2447.
  • A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Applications. BKC, Tokyo, 1999.
  • C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3 (2003) 1049–1051.
  • G. Liu, Z. Chen, C. Dong, Visible light photocatalyst: Iodine-doped mesoporous titania with a bicrystalline framework. J. Phys. Chem. B 110 (2006) 20823–20828.
  • W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal., B 69 (2007) 138–144.
  • L. Lin, W. Lin, J.L. Xie, Y.X. Zhu, B.Y. Zhao, Y.C. Xie, Photocatalytic properties of phosphor-doped titania nanoparticles. Appl. Catal., B 75 (2007) 52–58.
  • L. Mai, C. Huang, D. Wang, Z. Zhang, Y. Wang, Effect of C doping on the structural and optical properties of sol-gel TiO2 thin films. Appl. Surf. Sci. 255 (2009) 9285–9289.
  • H. Znad, Y. Kawase, Synthesis and characterization of S-doped Degussa P25 with application in decolorization of Orange II dye as a model substrate. J. Mol. Catal. A 314 (2009) 55–62.
  • M. Behpour, V. Atouf, Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation. Appl. Surf. Sci. 258 (2012) 6595–6601.
  • X.-X. Zou, G.-D. Li, J. Zhao, J. Su, X. Wei, K.-X. Wang, Y.-N. Wang, J.-S. Chen, Light-driven preparation, microstructure, and visible-light photocatalytic property of porous carbon-doped TiO2. Int. J. Photoenergy 2012 (2012) 1–9. doi:10.1155/2012/720183.
  • J. Wang, W. Zhu, Y. Zhang, S. Liu, An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing: Visible-light-induced photodecomposition of Methylene Blue. J. Phys. Chem. C 111 (2007) 1010–1014.
  • G.-S. Shao, X.-J. Zhang, Z.-Y. Yuan, Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl. Catal., B 82 (2008) 208–218.
  • J.-H. Xu, W.-L. Dai, J. Li, Y. Cao, H. Li, H. He, K. Fan, Simple fabrication of thermally stable apertured N-doped TiO2 microtubes as a highly efficient photocatalyst under visible light irradiation. Catal. Commun. 9 (2008) 146–152.
  • Z. He, H.Y. He, Synthesis and photocatalytic property of N-doped TiO2 nanorods and nanotubes with high nitrogen content. Appl. Surf. Sci. 258 (2011) 972–976.
  • Y. Wang, C. Feng, M. Zhang, J. Yang, Z. Zhang, Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity. Appl. Catal., B 104 (2011) 268–274.
  • G.C. Collazzo, E.L. Foletto, S.L. Jahn, M.A. Villetti, Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. J. Environ. Manage. 98 (2012) 107–111.
  • G. Liu, X. Wang, Z. Chen, H.-M. Cheng, G.Q.M. Lu, The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. J. Colloid Interface Sci. 329 (2009) 331–338.
  • R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (2001) 269–271.
  • H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem. B 107 (2003) 5483–5486.
  • APHA, Standard Methods for the Examination of Water and Wastewater. America Water Works Association, New York, 1999.
  • N.P. Tantak, S. Chaudhari, Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment. J. Hazard. Mater. B136 (2006) 698–705.
  • D. Chakrabortty, S. Sen Gupta, Photo-catalytic decolourization of toxic dye with N-doped titania: A case study with Acid Blue 25. J. Environ. Sci. 25 (2013) 1034–1043. doi:10.1016/S1001-0742(12)60108-9.
  • K.G. Bhattacharyya, S. Sen Gupta, Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite: Influence of acid activation. J. Colloid Interface Sci. 310 (2007) 411–424.
  • S.A. Simakov, Y. Tsur, Surface stabilization of nano-sized titanium dioxide: Improving the colloidal stability and the sintering morphology. J. Nanopart. Res. 9 (2007) 403–417.
  • M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, Photocatalytic discolorization of Methyl Orange solution by Pt modified TiO2 loaded on natural zeolite. Dyes Pigm. 77 (2008) 327–334.
  • J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J. Hazard. Mater. 155 (2008) 312–319.
  • L.C. Chen, T.C. Chou, Photobleaching of Methyl Orange in titanium dioxide suspended in aqueous solution. J. Mol. Catal. 85 (1993) 201–214.
  • B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere 46 (2002) 1173–1181.
  • G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Methylene Blue adsorption on natural and modified clays. Sep. Sci. Technol. 46 (2011) 1602–1614.
  • J. Grzechulska, A.W. Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide. Appl. Catal., B 36 (2002) 45–51.
  • M. Sleiman, D. Vildozo, C. Ferronato, J.M. Chovelon, Photocatalytic degradation of azo dye Metanil Yellow: Optimization and kinetic modeling using a chemometric approach. Appl. Catal., B 77 (2007) 1–11.
  • E. Bulut, M. Özacar, I.A. Sengil, Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater. 154 (2008) 613–622.
  • U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 170 (2009) 520–529.
  • S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe [About the theory of so-called adsorption of soluble substances]. Kungliga Svenska Vetenskapsakademiens, Handlingar, Band 24 (4) (1898) 1–39.
  • Y.S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59 (2004) 171–177.
  • I. Langmuir, The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40 (1918) 1361–1403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.